J.E. COULTER ASSOCIATES LIMITED

Consulting Engineers in Acoustics, Noise & Vibration

PRESIDENT
John E. Coulter, B.A.Sc., P.Eng

VICE-PRESIDENT Howard R. Patlik, c.e.t. Suite 211 1210 Sheppard Avenue East Toronto, Ontario M2K 1E3 Tel: (416) 502-8598 Fax: (416) 502-3473

www.jecoulterassoc.com

TRANSMITTAL RECORD

Date: July 17, 2015

To: Glen Schnarr & Associates Inc.

Catalina Developments

Enclosing Herewith: Report

Via: E-mail

Title: Noise & Vibration Impact Feasibility Study

For Townhouse Residential Development

Lindsay Court Town of Halton Hills

Regional Municipality of Halton

Comments:

Distribution: Mr. Jason Afonso

Mr. Brian Tilley

Per: Daniela Filiberto

NOISE & VIBRATION IMPACT FEASIBILITY STUDY FOR TOWNHOUSE RESIDENTIAL DEVELOPMENT LINDSAY COURT TOWN OF HALTON HILLS REGIONAL MUNICIPALITY OF HALTON

FOR

2301132 ONTARIO INC.

BY

HOWARD R. PATLIK, C.E.T.

CHECKED BY

JOHN E. COULTER, B.A.Sc., P.ENG.

J.E. COULTER ASSOCIATES LIMITED 1210 SHEPPARD AVENUE EAST, SUITE 211 TORONTO, ONTARIO M2K 1E3

JULY 14, 2015

TABLE OF CONTENTS

1.0	INTRODUCTIONPa	је 1
2.0	NOISE CRITERIAPa	је 1
3.0	TRANSPORTATION SOURCES 3.1 Goderich-Exeter Railway 3.2 Highway 7 2.3 Trafalgar Road 3.4 Local On-site Generated Traffic Page 1997 Page 19	ge 3 ge 4 ge 4
4.0	PROJECTED SOUND LEVELS	је 4
5.0	NOISE CONTROL MEASURES Pactor Locations 1 and 8 Pactor Location 9 Pactor Safety Berm Pactor Pa	ge 6 ge 6
6.0	ACOUSTIC FENCE REQUIREMENTSPa	је 7
7.0	VENTILATION AND WARNING CLAUSE REQUIREMENTSPa	је 8
8.0	FAÇADE COMPONENTSPa	је 8
9.0	RAIL VIBRATION MONITORINGPa	је 9
10.0	CONCLUSIONS Pa	је 9
11.0	RECOMMENDATIONSPag	∍ 10
	LIST OF TABLES	
TABL	LE 1: NOISE CRITERIAPa LE 2: GODERICH-EXETER RAILWAY – RAIL TRAFFIC VOLUMESPa LE 3: PROJECTED UNMITIGATED SOUND LEVELSPa LE 4: PROJECTED SOUND LEVELS WITH BARRIERSPa	ge 3 ge 5

APPENDICES

APPENDIX A: FIGURES

APPENDIX B: SOUND LEVEL CALCULATIONS

APPENDIX C: WARNING CLAUSES APPENDIX D: NOISE CRITERIA

APPENDIX E: REFERENCES AND CORRESPONDENCE

1.0 INTRODUCTION

At the request of 2301132 Ontario Inc., J.E. COULTER ASSOCIATES LIMITED has conducted a review of the proposed residential development (Part West Half Lot 20, Concession 8 Esquesing) in the Town of Halton Hills, Regional Municipality of Halton for potential noise and vibration impact. The purpose of this study is to establish whether or not it is necessary to incorporate noise and vibration control measures into the development in order to satisfy the noise requirements of the Ministry of the Environment and Climate Change (MOECC), CN Rail and the Regional Municipality of Halton.

The site is located approximately 100m east of Trafalgar Road, south of Highway 7 and north of the Goderich-Exeter Railway in the Town of Halton Hills (see Appendix A, Figures 1 and 2). The proposed residential development consists of 15 townhouse blocks with a total of 110 dwelling units.

The sound generated from the operation of the Goderich-Exeter Railway (CN Guelph Subdivision), a principal mainline, Highway 7 and Trafalgar Road have been identified as potential sources of transportation noise.

2.0 NOISE CRITERIA

The MOECC guidelines that apply to a residential development site such as this is the guideline Publication NPC-300. MOECC will permit sound levels up to 60 dB L_{eq} daytime (5 dB above the criterion level of 55 dB L_{eq}) in private outdoor amenity areas without noise barriers if the residential unit affected is provided with a warning clause in the *Agreement of Purchase and Sale* of the unit and subdivision agreement notifying the owner of the excess. Where the levels exceed 60 dB L_{eq} , noise mitigation measures must be incorporated into the subdivision design (i.e., intervening structures such as acoustic barriers or buildings and/or greater setbacks from the noise source). Where the criterion levels are marginally exceeded, a warning clause is required in the *Agreement of Purchase and Sale* and the Subdivision Agreement.

For residential buildings, the Ministry's ventilation requirements are based on the sound level at the exterior building façade. Where the sound levels at the exterior of the building façade exceed 55 dB L_{eq} daytime at the living room window or 50 dB L_{eq} night time at the bedroom window, the unit must be provided with forced air heating, with a provision for future air conditioning by the owner. An excess up to 10 dB is permissible, provided a warning clause is given. Where the sound levels exceed this limit (i.e., 65 dB daytime or 60 dB night time), air-conditioning must be incorporated into the building design prior to occupancy. Warning clauses are applicable as well.

Air-conditioning requirements are applied so that adequate interior sound levels can be maintained with the windows closed.

Table 1, below, gives a summary of the above criteria.

The railway normally requests a minimum 30m setback and a combination of 2.5m high safety berm and acoustic fence for a minimum height of 5.5m above top-of-rail adjoining and parallel to the railway Right-Of-Way (R-O-W) for a principal mainline, and having returns at the ends for any proposed development adjacent to its operating R-O-W or equivalent noise and safety features. In this case, the barrier height required to meet 55 dB L_{eq} daytime would need to be 7m high relative to the base of the berm (i.e., a 4.5m high acoustic fence and 2.5m high earth berm). An alternative to constructing an acoustic barrier on top of the safety berm would be to use local barriers close to the dwellings to meet the noise criteria.

In the case of the GEXR, if the railway's standard mitigation were used, the sound level in the amenity areas would be 55 dB L_{eq} daytime, without the whistle noise. Thus, the outdoor amenity area will be designed to meet 55 dB L_{eq} for the Guelph Subdivision.

TABLE 1: NOISE CRITERIA											
Living Area	Daytime (dB L _{eq}) (0700-2300)	Night Time (dB L _{eq}) (2300-0700)									
Outdoor Living Area (O.L.A.)	55										
Bedrooms	(35)	40(35)									
Living/Dining	45(40)	(40)									
Kitchen/Baths	50(45)										

Note: () indicates criteria levels required for the railways.

An outdoor living area in the residential subdivision is used in reference to a private outdoor patio or backyard. According to MOECC practice, backyards, outdoor patios or walkout patios are not considered as part of outdoor living areas when they are less than 4m in depth.

3.0 TRANSPORTATION SOURCES

The main sources of transportation noise in this development are the rail traffic on the Goderich-Exeter Railway, Highway 7 and Trafalgar Road. This report will focus on these sources and recommend the noise control measures that may be necessary to satisfy the criteria.

3.1 Goderich-Exeter Railway

The rail traffic data were provided in the attached letter from Goderich-Exeter Railway in Appendix B and summarized in Table 2 below. This rail line is situated along the south side of the proposed development. The rail line is elevated approximately 5 to 6.5m above the site. The Goderich-Exeter Railway (CN Guelph Subdivision) is classified as a Principal Mainline with freight and passenger traffic. Rail traffic is present during both the daytime and night-time periods. All rail traffic whistles at the Trafalgar Road crossing. The whistling activity commences 400m east and west of the grade level crossing.

TABLE	TABLE 2: GODERICH-EXETER RAILWAY – RAIL TRAFFIC VOLUMES												
Time	Train Type	# of Trains	Max. # of Cars	Max. # of Locomotives	Maximum Speed (kph)								
	Freight	2 (3.6)	59	2	88								
Daytime (0700-2300)	Commuter	3 (7.6)	5	1	113								
(0.00 2000)	Passenger (VIA)	5 (14.8)	5	1	113								
	Freight	0 (0)	59	2	88								
Night Time (2300-0700)	Commuter	1 (2.6)	5	1	113								
,	Passenger (VIA)	1 (3)	5	1	113								

Notes: Values are denoted as current and projected [in parentheses ()] rail traffic. The projection is for the year 2025 (minimum).

3.2 Highway 7

Highway 7 to the north of the development is a two-lane highway with a posted speed limit of 80 kph. The latest traffic count (2010) from MTO indicates Highway 7 carried 14,700 vehicles Summer Average Weekday Traffic (SAWT). Based on information provided by MTO and the historical growth rate (1%), the projected SAWT volume on Highway 7 is 17,066 vehicles SAWDT (2025) with 6.5% commercial trucks (split 40/60 between medium and heavy trucks). The highway is elevated approximately 2m above the site.

3.3 Trafalgar Road

Trafalgar Road carried 10,531 vehicles (24 hours, April 29, 2015) with 1.9% and 3.6% medium and heavy trucks, respectively. The posted speed limit is 80 kph. The Region has indicated that the growth rate on this road is 2.5% per annum. Therefore, the projected traffic in the year 2031 (16-year projection) is 15,633 vehicles AADT, a 48% growth from 2015.

3.4 Local On-site Generated Traffic

Acoustically, the site-generated noise and that from the immediately abutting roadways are anticipated to be minor. Thus, the sound levels generated by this traffic will not be incorporated into the calculations.

4.0 PROJECTED SOUND LEVELS

The Ministry of the Environment and Climate Change (MOECC) requires that any road or rail traffic control measures recommended must be based on a minimum 10-year traffic volume projection. All recommendations are based on the rail traffic volumes anticipated for the year 2025.

The daytime L_{eq} at grade receiver level and night-time 3^{rd} -storey road and rail traffic sound levels were determined utilizing methods as outlined in the MOECC's *ORNAMENT* and *STEAM* modelling procedures, MOECC's *STAMSON* computer programme, *Version 5.03* (see attached printouts).

The following Table 3 provides the sound levels at various locations throughout the development. The "no barrier" conditions are provided to determine if noise control measures are necessary to meet the MOECC's noise guidelines.

TABLE 3: PROJECTED UNMITIGATED SOUND LEVELS												
	L _{eq} D	AYTIME SO EXTERIOR (GRADE	FAÇADE		L _{eq} NIGHT-TIME SOUND LEVEL AT EXTERIOR FAÇADE (TOP FLOOR)							
LOCATION	GEXR	TRAFAL- GAR	HWY 7	TOTAL	GEXR	TRAFAL- GAR	HWY 7	TOTAL				
1 (Rear yard)	62	53		62	64	51	1 1 53	64				
2 (South Façade)	67	50		67	64	44		64				
3 (South Façade)	67	:		67	64			64				
3 (Rear yard)	55		-	55			₩					
4 (East Façade)	59			59	57		1941	57				
5 (East Façade)	54	::		54	51			51				
6 (North Façade)	63		48	63	59	1000 1000	45	59				
7 (North Façade)	38		62	62	45		59	59				
8 (Rear yard)	58	54		59	54	51	-	56				
9 (Rear yard)	57			57	56	3 4		56				

Notes:

- 1. For the grade level outdoor amenity areas, the receiver is assumed to be 3m from the rear façade of the unit and 1.5m above grade.
- 2. During the night time, the receiver location is assumed to be at the exterior window (3rd storey, 7.5m above grade level) and closest to the rail line.
- 3. Night-time sound levels at the façade include whistle noise.

From the above Table 3, the projected sound levels in the amenity areas for Locations 1 and 8 (7-unit townhouse block) will exceed the MOECC's and the railway's noise criteria of 55 dB L_{eq} daytime. Therefore, noise barriers are required to shield the amenity areas to achieve 55 dB L_{eq} where it is technically feasible. The sound levels at the exterior façade are also above the MOECC's and railway's noise criteria requiring ventilation and façade requirements.

5.0 NOISE CONTROL MEASURES

To satisfy the noise requirements of 55 dB L_{eq} in the rear yards, acoustic barriers are required for the units closest to the rail line and Trafalgar Road.

Locations 1 and 8

An acoustic barrier is required because of the combination of the GEXR Railway and Trafalgar Road sound levels. The barrier should commence at the southwest corner of the southernmost unit (Location 1) extending to the rear property line. The barrier then wraps to the north, continuing along the rear yard of the first five townhouse units, terminating at Location 8. The acoustic barrier is approximately 30m long. The height of the acoustic fence is 3.9m along its entire length. Details are provided in Appendix A, Figure 3.

If the lands directly to the west (southeast corner of Lindsay Court and Trafalgar Road) are developed in conjunction with these lands, the extent of the acoustic barrier will be reduced. In this case, the barrier at Location 1 will continue, parallel to the rail line, to the adjacent lands; the wrap along the western property will no longer be required.

Consideration was given to placing an acoustic fence on top of the safety berm. However, because of the height of the tracks above the site (about 5.6m), the total barrier height would need to be more than 9m (i.e., 6.5m fence and 2.5m berm) and continue to the west, terminating at Trafalgar Road. Given the impracticality of this measure, it is not recommended.

Location 9

An acoustic barrier is required to shield the rear yard at Location 9 (westernmost unit in 8-unit townhouse block). The barrier is to extend along the west and southern limits at a height of 2.6m (see Appendix A, Figure 3).

The rear yards of all other townhouse blocks are set back sufficiently or shielded by the townhouse units themselves, eliminating the need for acoustic barriers to shield the rear yards because the sound levels meet 55 dB L_{eq} daytime or less.

Safety Berm

A 2.5m high earth berm is required along the southern part of the development. This berm has been designed to meet the railways requirement for a Principal Mainline. Therefore, the berm height is a minimum of 2.5m. The berm is to extend along the southerly portion of the property in the railway buffer, as shown in Appendix A, Figure 4. The safety berm does not provide any noise attenuation benefit because the tracks are elevated 5 to 6m above the site.

All barriers can be a combination of acoustic fencing and an earth berm, as applicable. The barrier height and final top of barrier elevation will need to be detailed once the final site grading plans are available. The barrier heights may change slightly (±0.3m).

TABLE 4: PROJECTED SOUND LEVELS WITH BARRIERS										
Location	Minimum Barrier (Fence and/or Berm) Height (m)	Grade Level, Daytime (dB L _{eq})								
Location 1 (southernmost unit)	3.9	55								
Location 8 (4 th northernmost unit)	3.9	55								
Location 9 (west end unit)	2.6	54								

Note: For the outdoor living area (OLA) grade level sound calculations (daytime), the receiver is assumed to be 3m from the rear façade of the unit.

6.0 ACOUSTIC FENCE REQUIREMENTS

All acoustical barriers (fence and/or earth berming) must be solid. Any gaps at the base of the acoustic fence must be minimized and localized so as not to significantly affect the acoustical performance of the fence. As required by the MOECC guidelines, all acoustical fences must have a minimum surface density of 20 kg/m² (4 lbs./ft.²). As required by the Region, all noise barriers shall be constructed of Western Red Cedar or concrete and can be a combination of an acoustic wall and earth berm.

7.0 VENTILATION AND WARNING CLAUSE REQUIREMENTS

The MOECC requires that air conditioning be provided where the exterior sound levels at the building façade exceed 60 dB L_{eq} at night. Based on a10-year traffic prediction and the requirements of the MOECC, central air conditioning prior to occupancy will be required for the following units (see Appendix A, Figure 4 for Noise Control Map):

- a) The two southernmost units in 7-unit townhouse block (closest to Trafalgar Road)
- b) The 7-unit townhouses directly facing the railway
- c) The 19-unit townhouses directly facing the railway.

The above-noted units will also require a warning clause to be incorporated into the *Agreements of Purchase and Sale*. Warning Clause "A" is applicable (see Appendix C).

When the night-time sound levels are above 50 dB L_{eq} and less than 60 dB L_{eq} at the bedroom windows, MOECC requires the installation of a forced air heating system with provisions for future air conditioning (at owners' option and cost) and Warning Clause "B." This is applicable to the balance of the site.

A warning clause must be inserted into the *Agreements of Purchase and Sale* (or Leases) and Subdivision Agreement indicating that the sound levels have exceeded the MOECC's noise guidelines (See Appendix C, Warning Clauses).

The railway requests that its warning clause be used for all units within 300m of the railway Right-of-Way. The proponent should discuss this matter directly with CN Rail (see Warning Clause "C" in Appendix C).

8.0 FAÇADE COMPONENTS

The MOECC's noise criteria for interior sound levels are 40 dB L_{eq} night time for bedrooms and 45 dB L_{eq} daytime for living/dining rooms. Due to the presence of railway-generated noise (locomotive and wheel/rail noise), the Ministry requests that 5 dB be added to the rail levels (i.e., stricter criterion of 35 dB L_{eq} in the bedrooms) to account for the low-frequency components of the locomotives.

For the purpose of controlling the transportation noise sources, the windows will require an STC rating of 27 (3mm double glazing with a 13mm gap between the lites, provided the maximum bedroom and living/diningroom window-area-to-floor-area ratios are 20% or less). This is a standard, readily available window. Larger window-area-to-floor-area ratios will require upgrades to the glazing thickness and/or air space. Once the final architectural plans are ready, the acoustic consultant should confirm the final façade requirements for these areas.

The MOECC will require brick veneering to be applied from the top of the foundation wall up to the soffits when the night-time 3^{rd} -storey L_{eq} sound level exceeds 60 dB L_{eq} . This is applicable to all dwellings within 45m of the south property line limit and will assist in reducing the low frequency engine throbbing that causes the walls to vibrate. Walls facing away from the tracks do not need this treatment.

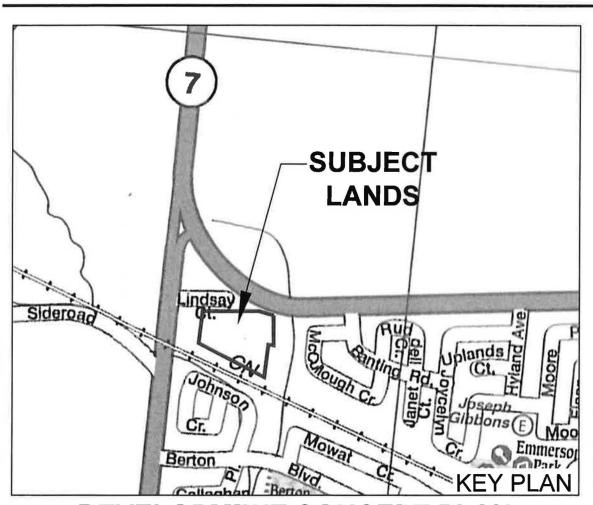
9.0 RAIL VIBRATION MONITORING

The tracks are elevated 5 to 6m above grade at the closest units. An accelerometer (vibration pickup) was mounted approximately 6 inches below surface grade on undisturbed soil, along with the amplifier and recorder. The line carries freight and passenger traffic. The train passbys (2 freight and 2 passenger trains) did not exceed the overall level of perception, 0.14 mm/s RMS velocity. Since the monitored levels are below the railway's guidelines, no mitigation measures for vibration are required for the proposed residential subdivision.

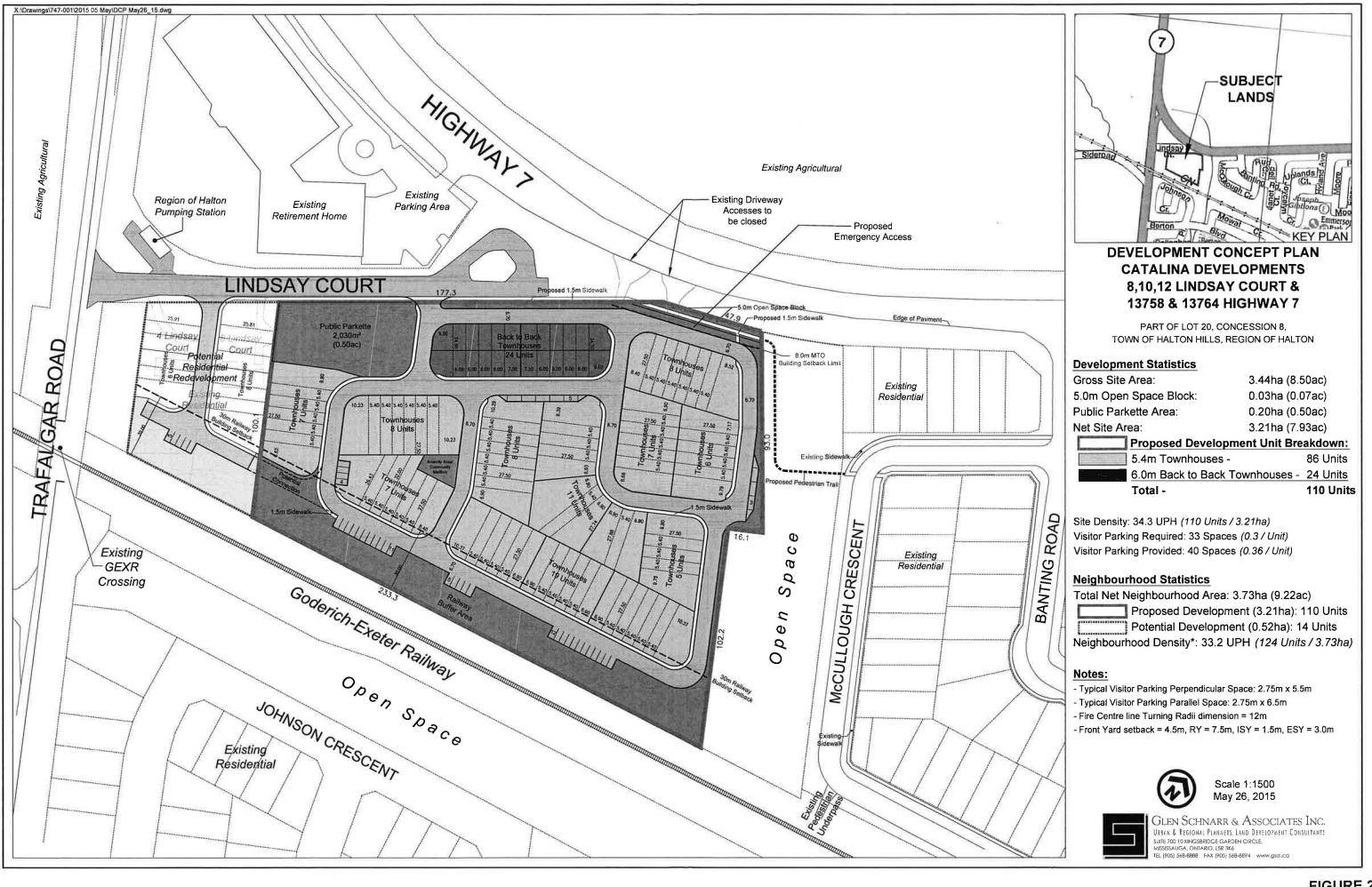
10.0 CONCLUSIONS

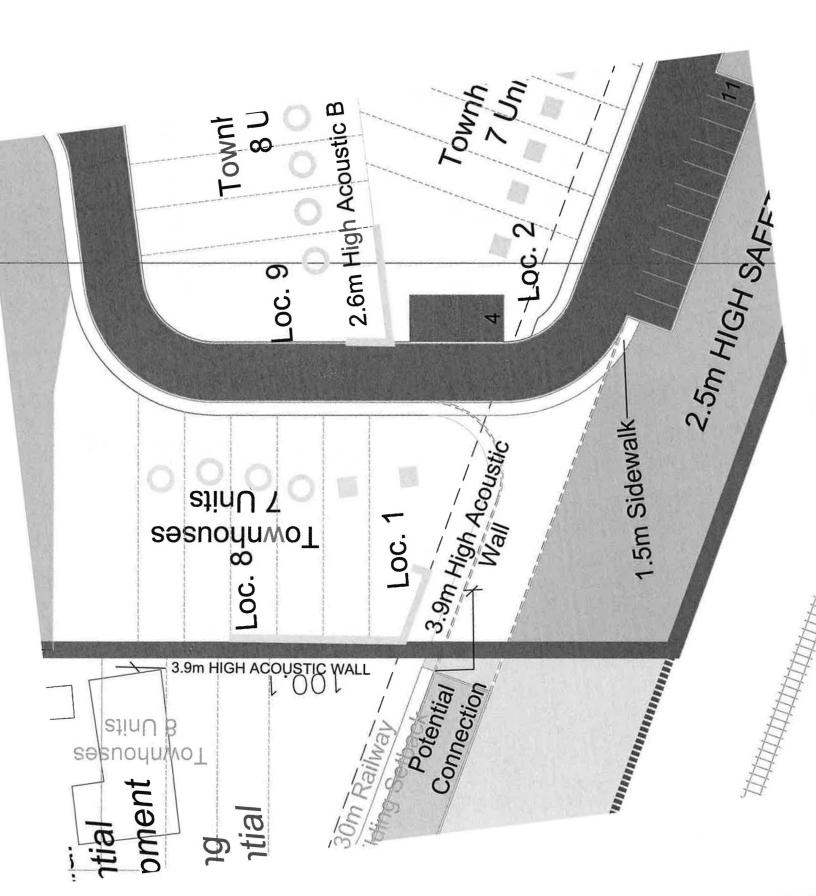
This site is subject to a noise impact from the Goderich-Exeter Railway, Highway 7 and Trafalgar Road. Noise control measures in the form of a berm/barrier combination, central air conditioning and the provision for future central air conditioning and warning clauses are required.

Monitoring indicates the vibration levels are below the railway's guidelines and thus vibration mitigation measures are not required for the proposed residential subdivision.

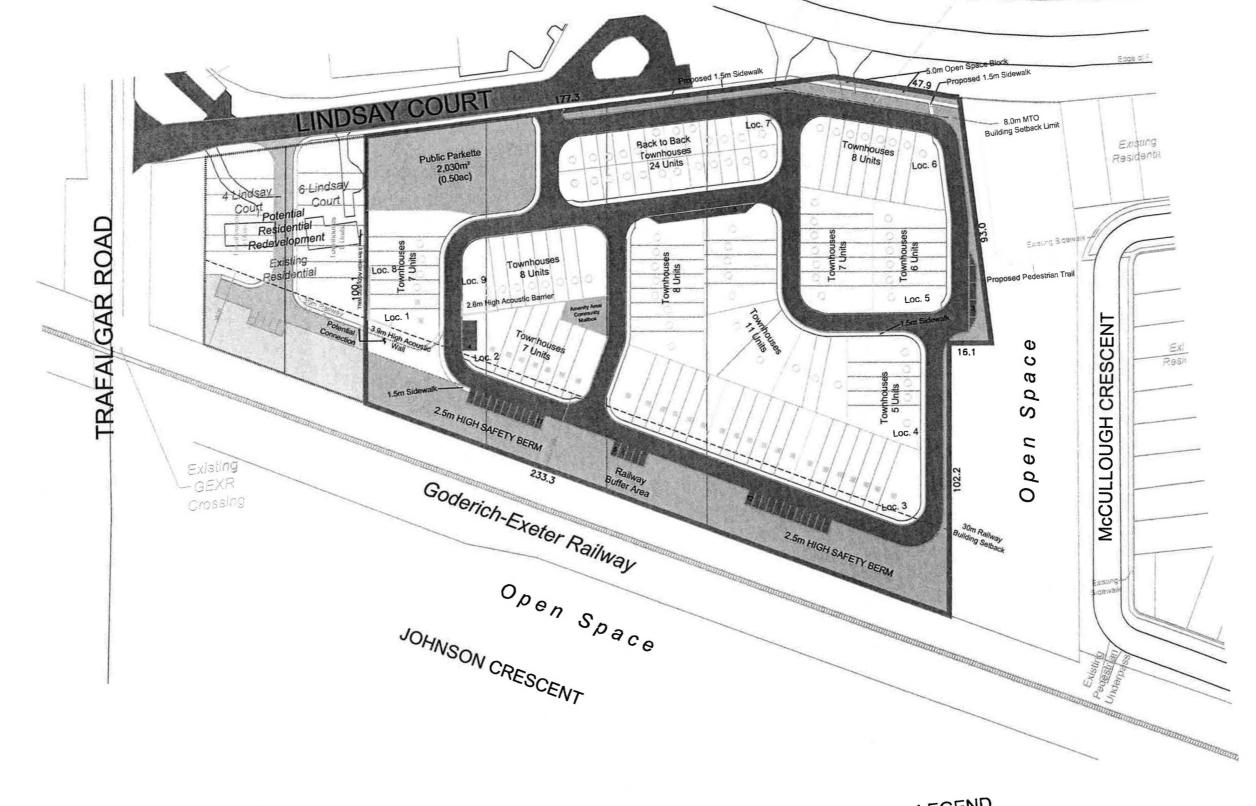

11.0 RECOMMENDATIONS

To meet the noise criteria of the Ministry of the Environment and Climate Change, CN Rail, and the Region of Halton, the following recommendations are proposed:


- 1. The barrier should commence at the southwest corner of the southernmost unit (Location 1) extending to the rear property line. The barrier then wraps to the north continuing along the rear yard of the first five townhouse units, terminating at Location 8. The acoustic barrier is approximately 30m long. The height of the acoustic fence is 3.9m along its entire length. Details are provided in Appendix A, Figure 3. If the lands directly to the west (southeast corner of Lindsay Court and Trafalgar Road) are developed in conjunction with these lands, the extent of the acoustic barrier will be reduced. In this case, the barrier at Location 1 will continue, parallel to the rail line, to the adjacent lands; the wrap along the western property will no longer be required.
- 2. An acoustic barrier is required to shield the rear yard at Location 9 (westernmost unit in 8-unit townhouse block). The barrier is to extend along the west and southern limits at a height of 2.6m (see Appendix A, Figure 3).
- 3. A 2.5m high earth berm is required along the southern part of the development. This berm has been designed to meet the railways' safety requirement for a Principal Mainline. Therefore, the berm height is a minimum of 2.5m. The berm extends along the southerly portion of the property, as shown in Appendix A, Figure 4. The safety berm does not provide any noise attenuation benefit because the tracks are elevated 5 to 6m above the site.
- 4. It is recommended the acoustic consultant confirm the final barrier alignments and top-of-barrier elevations once the final grading plan is available.
- 5. All acoustical barriers (fence and/or earth berming) must be solid. Any gaps at the base of the acoustic fence must be minimized and localized so as not to significantly affect the acoustical performance of the fence. As required by the MOECC's guidelines, all acoustical fences must have a minimum surface density of 20 kg/m² (4 lbs./ft.²). Acoustical fences may be constructed of heavy wood or concrete.
- 6. It is recommended the following units incorporate central air conditioning prior to occupancy:
 - a) The two southernmost units in 7-unit townhouse block (closest to Trafalgar Road)
 - b) The 7-unit townhouses directly facing the railway
 - c) The 19-unit townhouses directly facing the railway.


- 7. It is recommended the units noted in Item 5, above, incorporate a warning clause into the *Agreements of Purchase and Sale* (see Appendix C, Warning Clause "A").
- 8. It is recommended the remainder of the development incorporate a forced air heating system, with provisions for future air conditioning at owners' option and cost.
- 9. It is recommended the remainder of the development incorporate a warning clause into the *Agreements of Purchase and Sale* (see Appendix C, Warning Clause "B").
- 10. The railway requests a warning clause be incorporated into the Agreements of Purchase and Sale or Occupancy/Offers to Lease (see Appendix C, Warning Clause "C"). This is applicable to the entire development.
- 11. All noise control measures are summarized in Appendix A, Figure 4.
- 12. For the purpose of controlling the transportation noise sources, the windows will require an STC rating of 27 (3mm double glazing with a 13mm gap between the lites) provided the maximum bedroom and living/diningroom window-area-to-floor-area ratios are 20% or less). This is a standard, readily available window. Larger window-area-to-floor-area ratios will require upgrades to the glazing thickness and/or air space. Once the final architectural plans are ready, the acoustic consultant should confirm the final façade requirements for these areas.
- 13. The MOECC will require brick veneering to be applied from the top of the foundation wall up to the soffits for all units within 45m of the southern property line limit. The additional mass will assist in controlling the low-frequency engine throbbing sound that causes the walls to vibrate. Walls facing away from the tracks do not need this treatment.

APPENDIX A: FIGURES



DEVELOPMENT CONCEPT PLAN
CATALINA DEVELOPMENTS
8,10,12 LINDSAY COURT &
13758 & 13764 HIGHWAY 7

FIGUF

NOISE CONTROL MEASURES

LEGEND

- CENTRAL A/C + WARNING CLAUSES "A" & "D"
- FORCED AIR HEATING W/PROVISON FOR CENTRAL A/C + WARNING CLAUSES "A" & "C"

FIGURE 4

APPENDIX B: SOUND LEVEL CALCULATIONS

GODERICH-EXETER RAILWAY LIMITED

101 Shakespeare Street • 2nd • Stratford Ontario • N5A 3W5 • Phone: 519 271-4441 • Fax: 519 271-1337

Howard R. Patlik C.E.T.
J.E. Coulter Associates Limited
1210 Shepard Avenue, East Suite 211
North York, Ontario
M2K 1E3

December 21, 2011

(hpatlik@jecoulterassoc.com)
(via email only)

Re: Rail Traffic - Guelph Subdivision - Halton Hills ON

As per your request, the following information is provided for the area in the vicinity of Trafalgar Road, Halton Hills Ontario.

The typical daily rail traffic volumes are representative of a twenty four (24) hour period, but I must caution that such volumes are subject to overall economic conditions and will fluctuate with varying traffic demands, weather conditions, track maintenance programs and statutory holidays.

The Guelph Subdivision is a single track main line, considered as principal main track where within the area that was referenced, trains are required to whistle for level road crossings.

At present the number of trains which are scheduled to operate between 0700 and 2300 there are five (5) passenger trains, three (3) commuter trains and two (2) freight trains.

Between the hours of 2300 to 0700, there is currently one (1) passenger train and one (1) commuter train.

Passenger trains normally operate on average with one (1) locomotive and five (5) coaches, commuter trains normally operate on average with two (2) locomotives and ten (10) bi-level coaches and freight trains are normally operated with two (2) locomotives and fifty nine (59) rail cars.

Passenger and commuter trains may operate at up to a maximum speed of seventy (70) miles per hour while freight train speeds are a maximum of fifty five (55) miles per hour.

Based on current forecasts, passenger and commuter trains may increase by 100 percent, times of operation are unknown at this time, while freight traffic is expected to grow between five (5%) and ten (10%) per cent annually over the next three (3) years without any additional freight trains.

GODERICH-EXETER RAILWAY LIMITED

101 Shakespeare Street • 2nd • Stratford Ontario • N5A 3W5 • Phone: 519 271-4441 • Fax: 519 271-1337 In view of the increased use of this line, it is anticipated that additional infrastructure improvements may be completed that would allow for faster train speeds over this portion of the Guelph Subdivision.

If you have any further questions please feel free to contact me at 519 271-4441 Extension 3.

Yours truly,

Doug MacKenzie General Manager Goderich-Exeter Railway

Highway	Location Description	Dist	Year	Patt Type	AADT	SADT	SAWDT	WADT	AR
			2001	С	14,200	16,000	16,000	12,800	0.0
			2002		14,300	16,000	16,100		
			2003		14,100	15,800	15,900		
			2004		14,100			2	
			2005		14,200				
			2006		14,200				
			2007		14,200				
			2008		14,300	15,800			
			2009		14,300	15,800			
		_	2010		14,400				
7	HAL RD 19-WINSTON CHURCHILL BVD	1.6	1988		16,300	17,100	18,400	15,300	
			1989		16,800	17,600	18,900	15,900	
			1990		16,300	17,400	18,900	15,400	
			1991	UC	15,700	16,600	18,000	15,200	
			1992		15,900	16,500	17,900	14,700	
			1993		17,050				
			1994		16,700				
			1995		17,600	8			
			1996		17,200				
			1997		17,400				
			1998 1999		17,600				
			2000		17,300				
			2000	UC	17,000 17,400	18,100 18,600	20,000 20,500		
			2001	UC	17,400	18,500	20,500	16,400 16,300	
			2002		17,400				
			2003		17,400				
			2005		17,500				
			2006	1000 (000)	17,500				
			2007	UC	17,500				
			2008		17,500				
			2009	200	17,600	18,600			
			2010		17,600			16,500	
7	HALL RD-START OF NA FORMER GEORGETOWN	5.0			,	,		,	
7	HALTON RD 32-HALTON HILLS-END OF NA	1.4	1988	С	10,600	11,700	11,700	9,500	0.4
			1989	С	10,850	12,000	12,100	9,700	0.4
			1990	UC	11,050			10,400	0.4
			1991	UC	11,400				
			1992	UC	11,600				
			1993		11,200	11,800			
			1994		11,600				
			1995			12,500	5.903.003.29	1. 227. 20. 20.	
			1996			11,700			
		I	1997	IC	12,100	13,500	13,700	10,600	0.2

Highway	Location Description	Dist	Year	Patt Type	AADT	SADT	SAWDT	WADT	AR
			1998	IC	12,500	13,900	14,000	11,100	0.2
			1999	IC	12,100	13,500	13,600	10,700	0.8
			2000	IC	12,200	13,600	13,700	10,800	1.0
			2001	IC	12,300	13,800	13,800	10,800	0.5
			2002	IC	12,400	13,800	13,900	10,900	0.3
			2003	IC	12,300	13,700	13,800	10,800	0.3
			2004		12,600				0.3
			2005		12,700				0.5
			2006		12,800				
1			2007	IC	12,900			(2)	
			2008		13,000	Si		11,500	
			2009		13,100			11,600	
			2010		13,200				
7	S JCT HALTON RD 3-TRAFALGAR RD	3.5	1988	С	13,950	15,400		12,500	
			1989		14,150			12,700	
			1990	- 0	14,700			13,900	
			1991	UC	15,100			14,600	
			1992		15,300			14,600	
			1993		14,850				
			1994		15,100				
			1995		15,300			322	
			1996		14,800			N WY	
			1997	UC	14,900			14,000	
			1998		16,200			15,400	
			1999		16,200			15,400	
			2000 2001	C	16,700 16,700			15,000	
			2001		17,000			15,000 15,300	
			2002		17,300				
			2003		17,600				
			2005		17,900				
			2006		18,200				
			2007	c	18,400				
			2008		18,700				
			2009	8.7	19,000			17,100	
			2010			21,300		17,400	
7	N JCT HALTON RD 3	5.7	1988		7,950			7,100	
			1989		8,050	8,900		7,200	
			1990		8,200	8,700		7,700	
			1991	UC	8,450			8,100	
			1992	The same areas in	8,500			8,100	
			1993		8,300			7,600	
			1994		8,500			7,800	
			1995	UC	8,600	9,100		7,900	

STAMSON 5.0 NORMAL REPORT Date: 13-07-2015 15:33:23 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc1r.te Time Period: Day/Night 16/8 hours

Description: Loc 1 - Rear yard - No Barrier

Rail data, segment # 1: GEXR (day/night)

T	rai: ype		!	Trains	!	(km/h)	1/	Trair	1!/	/Train	! Eng ! type	!weld
		Freight	!	0 5 /0 0							-	-
*	2.	Passenger	į	14.8/3.0	!	113.0	!	1.0	1	5.0	!Diesel	! Yes
*	3.	Commuter	!	7.6/2.6	1	113.0	1	1.0	1	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train No	n type: Name		Unadj. Trains							
		-+-		+-			+		+	
1.	Freight	į	3.2/0	. 0	!	3	. 24	!	3.00	!
2.	Passenger	1	12.0/2	. 4	. !	7	.18	!	3.00	Ī
3.	Commuter	Ţ	7.1/2	. 4	. !	2	.50	!	3.00	į

Data for Segment # 1: GEXR (day/night)

Angle1 Angle2 : -64.00 deg 0.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 47.00 / 47.00 mReceiver height : 1.50 / 4.50 m

Topography No Whistle : 3 (Elevated; no barrier)

Elevation : 5.65 m

Rail data, segment # 2: GEXR (day/night)

Train Type	!!	Trains	1	(km/h)	!/	Trair	ı!,	/Train	s! Eng i! type	!weld
* 2. Passenger	!	3.5/0.0 14.8/3.0 7.6/2.6	1	88.0 113.0	<u>!</u> !	2.0	!	59.0 5.0		! Yes ! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type: No Name		Unadj. ! Trains !		! (Growt	h!	
1. Freight 2. Passenger		3.2/0.0 12.0/2.4	1	3.24 7.18		3.00	!
3. Commuter	!	7.1/2.4	1	2.50	£	3.00	į

```
Data for Segment # 2: GEXR (day/night)
_____
Anglel Angle2 : 0.00 deg 44.00 deg Wood depth : 0 (No woods
                                (No woods.)
              :
                        0 / 0
1 (Absorptive ground surface)
No of house rows
Surface
Receiver source distance : 47.00 / 47.00 m
Receiver height : 1.50 / 4.50 m
                    : 3 (Elevated; no barrier)
Topography
No Whistle
Elevation
                        5.65 m
Rail data, segment # 3: GEXR (day/night)
------
       ! Trains ! Speed !# loc !# Cars! Eng !Cont
! (km/h) !/Train!/Train! type !weld
Train
Type
* 1. Freight ! 3.5/0.0 ! 88.0 ! 2.0 ! 59.0 !Diesel! Yes
* 2. Passenger ! 14.8/3.0 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
* 3. Commuter ! 7.6/2.6 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
* The identified number of trains have been adjusted for
  future growth using the following parameters:
Train type: ! Unadj. ! Annual % ! Years of ! No Name ! Trains ! Increase ! Growth !
1. Freight ! 3.2/0.0 ! 3.24 ! 3.00 ! 2. Passenger ! 12.0/2.4 ! 7.18 ! 3.00 ! 3. Commuter ! 7.1/2.4 ! 2.50 ! 3.00 !
Data for Segment # 3: GEXR (day/night)
Angle1 Angle2 : 44.00 deg 90.00 deg Wood depth : 0 (No woods
Wood depth : 0
No of house rows : 0 / 0
Surface : 1
                                 (No woods.)
                                (Absorptive ground surface)
Receiver source distance : 47.00 / 47.00 m
Receiver height : 1.50 / 4.50 m
Topography
                    : 3 (Elevated; no barrier)
No Whistle
Elevation
                     : 5.65 m
Results segment # 1: GEXR (day)
_______
LOCOMOTIVE (0.00 + 57.82 + 0.00) = 57.82 \text{ dBA}
Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
      0 0.42 69.75 -7.02 -4.91 0.00 0.00 0.00 57.82
  -64
__________
WHEEL (0.00 + 48.99 + 0.00) = 48.99 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -64 0 0.52 61.54 -7.54 -5.01 0.00 0.00 0.00 48.99
```

Segment Leg: 58.35 dBA

Results segment # 2: GEXR (day)

LOCOMOTIVE (0.00 + 56.42 + 0.00) = 56.42 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 44 0.42 69.75 -7.02 -6.30 0.00 0.00 0.00 56.42

WHEEL (0.00 + 47.65 + 0.00) = 47.65 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

44 0.52 61.54 -7.54 -6.35 0.00 0.00 0.00 47.65 ______

Segment Leq: 56.96 dBA

Results segment # 3: GEXR (day) -----

LOCOMOTIVE (0.00 + 54.82 + 0.00) = 54.82 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _______

90 0.42 69.75 -7.02 -7.91 0.00 0.00 0.00 54.82 _______

WHEEL (0.00 + 45.66 + 0.00) = 45.66 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

______ 44 90 0.52 61.54 -7.54 -8.35 0.00 0.00 0.00 45.66

Segment Leq: 55.32 dBA

Total Leq All Segments: 61.82 dBA

Road data, segment # 1: Trafalgar Rd (day/night)

Car traffic volume : 13296/1477 veh/TimePeriod * Medium truck volume : 267/30 Heavy truck volume : 507/56 veh/TimePeriod * veh/TimePeriod *

Posted speed limit : 80 km/h

0 % Road gradient :

Road pavement 1 (Typical asphalt or concrete) :

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 10531

Percentage of Annual Growth : 2.50 Number of Years of Growth

: 16.00

Medium Truck % of Total Volume : 1.90
Heavy Truck % of Total Volume : 3.60
Day (16 hrs) % of Total Volume : 90.00

Data for Segment # 1: Trafalgar Rd (day/night)

Angle1 Angle2 : -90.00 deg 90.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 97.00 / 97.00 m

Receiver height : 1.50 / 7.50 m
Topography : 1 (Flat/gentle slope; no barrier)

Results segment # 1: Trafalgar Rd (day) ______

Source height = 1.38 m

ROAD (0.00 + 53.47 + 0.00) = 53.47 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.66 71.03 0.00 -13.46 -1.46 0.00 -2.64 0.00 53.47 ______

Segment Leq: 53.47 dBA

Total Leq All Segments: 53.47 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 62.41

STAMSON 5.0 NORMAL REPORT Date: 13-07-2015 15:34:40

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc1r.te Time Period: Day/Night 16/8 hours

Description: Loc 1 - Rear yard - With 3.9m Barrier

Rail data, segment # 1: GEXR (day/night)

Train Type	1	Trains							s! Eng n! type	
-1100	-+								+	
* 1. Freight	ļ	3.5/0.0	ļ	88.0	1	2.0	!	59.0	!Diesel	! Yes
* 2. Passenger	ļ	14.8/3.0	1	113.0	1	1.0	!	5.0	!Diesel	! Yes
* 3. Commuter	1	7.6/2.6	1	113.0	!	1.0	!	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type: No Name		Unadj. ! Trains !					
	+-	+-		+		+	
1. Freight	!	3.2/0.0	1	3.24	1	3.00	!
2. Passenger	!	12.0/2.4		7.18	Ţ	3.00	1
3. Commuter	!	7.1/2.4	!	2.50	1	3.00	!

Data for Segment # 1: GEXR (day/night) ______

Angle1 Angle2 : -64.00 deg 0.00 deg Wood depth : 0
No of house rows : 0 / 0
Surface : 1 (No woods.)

(Absorptive ground surface)

Receiver source distance : 47.00 / 47.00 mReceiver height : 1.50 / 4.50 m

: 4 (Elevated; with barrier) Topography

No Whistle

: -64.00 deg Angle2 : 0.00 deg Barrier angle1

Barrier height : 3.90 m Elevation : 5.65 m

Barrier receiver distance : 2.60 / 2.60 m

Source elevation : 277.50 m Receiver elevation : 271.85 m Barrier elevation : 271.85 m

Rail data, segment # 2: GEXR (day/night)

Tra			!	Trains	Ţ	(km/h)	1/	Train	11,	/Train	! Eng ! type +	!weld
		Freight	!	3.5/0.0	- 2		- 10		-		!Diesel	58.0
* 2	2.	Passenger	!	14.8/3.0	Ī	113.0	Î	1.0	!	5.0	!Diesel	! Yes
* (3.	Commuter	1	7.6/2.6	Ţ	113.0	ļ	1.0	1	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type: No Name		Unadj.! Trains!			ars		
1. Freight	+· !	3.2/0.0	!	3.24	!	3.00	.!
Passenger	ļ	12.0/2.4	!	7.18	!	3.00	!
3. Commuter	1	7.1/2.4	1	2.50	1	3.00	1

```
Data for Segment # 2: GEXR (day/night)
-----
Angle1 Angle2 : 0.00 deg
Wood depth : 0
No of house rows : 0 / 0
                                         44.00 deg
                                          (No woods.)
Wood depth.
No of house rows
                              0 / 0
Surface
                                          (Absorptive ground surface)
Receiver source distance : 47.00 / 47.00 m Receiver height : 1.50 / 4.50 m
                         : 4 (Elevated; with barrier)
Topography
No Whistle
                 : 0.00 deg Angle2 : 44.00 deg
: 3.90 m
: 5.65 m
Barrier angle1
Barrier height
Elevation
Barrier receiver distance: 2.60 / 2.60 m
Source elevation : 277.50 m
Receiver elevation : 271.85 m
Barrier elevation : 271.85 m
Rail data, segment # 3: GEXR (day/night)
! Trains ! Speed !# loc !# Cars! Eng !Cont
! (km/h) !/Train!/Train! type !weld
______________
* 1. Freight ! 3.5/0.0 ! 88.0 ! 2.0 ! 59.0 !Diesel! Yes * 2. Passenger ! 14.8/3.0 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
* 3. Commuter ! 7.6/2.6 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
* The identified number of trains have been adjusted for
  future growth using the following parameters:
Train type: ! Unadj. ! Annual % ! Years of !
No Name ! Trains ! Increase ! Growth !
Train type:
1. Freight ! 3.2/0.0 ! 3.24 ! 3.00 ! 2. Passenger ! 12.0/2.4 ! 7.18 ! 3.00 ! 3. Commuter ! 7.1/2.4 ! 2.50 ! 3.00 !
Data for Segment # 3: GEXR (day/night)
-----
Angle1 Angle2 : 44.00 deg 90.00 deg Wood depth : 0 (No woods
Wood depth : 0
No of house rows : 0 / 0
Surface : 1
                                          (No woods.)
                                         (Absorptive ground surface)
Receiver source distance : 47.00 / 47.00 m
Receiver height : 1.50 / 4.50 m
Topography
                         : 4 (Elevated; with barrier)
No Whistle
Barrier angle1 : 44.00 deg Angle2 : 90.00 deg Barrier height : 3.90 m Elevation : 5.65 m
Barrier receiver distance : 1.15 / 1.15 m
Source elevation : 277.50 m
Receiver elevation : 271.85 m
Barrier elevation : 271.85 m
```

Results segment # 1: GEXR (day)

Barrier	height	for	grazing	incidence

3.75 C	!	Ī	Height	(m)	1	Elevation of Barrier Top (m)
4.00	!	!	1	.95 .76	į	

LOCOMOTIVE (0.00 + 44.85 + 0.00) = 44.85 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-64 0 0.18 69.75 -5.86 -4.68 0.00 0.00 -14.35 44.85

WHEEL (0.00 + 35.05 + 0.00) = 35.05 dBA
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-64 0 0.29 61.54 -6.38 -4.78 0.00 0.00 -15.33 35.05

Segment Leq: 45.28 dBA

Results segment # 2: GEXR (day)

Barrier height for grazing incidence

Source		!	Receive	r	!	Barrier		Ţ	Elevation of	
Height	(m)	į	Height	(m)	!	Height	(m)	!	Barrier Top (m	L)
		+-			+-			+-		
	4.00	!		1.50	!		1.95	1	273.80	
	0.50	!		1.50	!		1.76	!	273.61	

LOCOMOTIVE (0.00 + 42.66 + 0.00) = 42.66 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 44 0.18 69.75 -5.86 -6.20 0.00 0.00 -15.02 42.66

WHEEL (0.00 + 32.91 + 0.00) = 32.91 dBA Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 0 44 0.29 61.54 -6.38 -6.25 0.00 0.00 -16.01 32.91

Segment Leq: 43.10 dBA

Results segment # 3: GEXR (day)

Barrier height for grazing incidence

Source		!	Receive	r	į	Barrier		1	Elevation of	
Height	(m)	!	Height	(m)	ļ	Height	(m)	•	Barrier Top	(m)
		+-			-+-			+-		-
	4.00	1		1.50	Ţ		1.70	!	273.55	
	0.50	!		1.50	!		1.61	!	273.46	

LOCOMOTIVE (0.00 + 44.89 + 0.00) = 44.89 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

44 90 0.18 69.75 -5.86 -6.85 0.00 0.00 -12.15 44.89

WHEEL (0.00 + 35.26 + 0.00) = 35.26 dBA
Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
44 90 0.29 61.54 -6.38 -7.34 0.00 0.00 -12.56 35.26

Segment Leq: 45.34 dBA

Total Leg All Segments: 49.46 dBA

Results segment # 1: GEXR (night)

Barrier height for grazing incidence

Source Height (m)	- 0	Receiver Height		-		Elevation of Barrier Top (m)
4.00		-	.50 .50	- 5	4.78 4.59	276.63 276.44

LOCOMOTIVE (0.00 + 53.52 + 0.00) = 53.52 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-64 0 0.09 64.92 -5.41 -4.59 0.00 0.00 0.00 54.92*

-64 0 0.33 64.92 -6.57 -4.82 0.00 0.00 0.00 53.52

* Bright Zone !

WHEEL (0.00 + 43.35 + 0.00) = 43.35 dBA Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -64 0 0.20 55.37 -5.93 -4.69 0.00 0.00 -0.26 44.47* -64 0 0.43 55.37 -7.10 -4.92 0.00 0.00 0.00 43.35

Segment Leq: 53.92 dBA

^{*} Bright Zone !

Road data, segment # 1: Trafalgar Rd (day/night) Car traffic volume : 13296/1477 veh/TimePeriod * Medium truck volume: 267/30 veh/TimePeriod *
Heavy truck volume: 507/56 veh/TimePeriod *
Posted speed limit: 80 km/h
Road gradient: 0 9 Road gradient : 0 % Road pavement : 1 (1 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 10531 Percentage of Annual Growth : 2.50
Number of Years of Growth : 16.00 Medium Truck % of Total Volume : 1.90 Heavy Truck % of Total Volume : 3.60 Day (16 hrs) % of Total Volume : 90.00 Data for Segment # 1: Trafalgar Rd (day/night) Angle1 Angle2 : -90.00 deg 90.00 deg
Wood depth : 0 (No woods
No of house rows : 1 / 0
Surface : 1 (Absorption (No woods.) (Absorptive ground surface) Receiver source distance : 97.00 / 97.00 m Receiver height: 1.50 / 7.50 m

Topography: 2 (Flat/gentle slope;
Barrier angle1: 0.00 deg Angle2: 90.00 deg
Barrier height: 3.00 m

Barrier receiver distance: 4.50 / 4.50 m 2 (Flat/gentle slope; with barrier) Source elevation : 276.00 m Receiver elevation : 271.85 m Barrier elevation : 271.65 m $\,$ Results segment # 1: Trafalgar Rd (day) ______ Source height = 1.38 m Barrier height for grazing incidence -----Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) ______ 1.38 ! 1.50 ! 1.89 ! 273.54 ROAD (50.46 + 46.75 + 0.00) = 52.00 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 0 0.66 71.03 0.00 -13.46 -4.47 0.00 -2.64 0.00 50.46 0 90 0.66 71.03 0.00 -13.46 -4.47 0.00 -2.64 0.00 50.46 0 90 0.48 71.03 0.00 -12.03 -4.16 0.00 0.00 -8.09 46.75

Segment Leq : 52.00 dBA

Total Leq All Segments: 52.00 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 53.92

STAMSON 5.0 NORMAL REPORT Date: 13-07-2015 15:41:13

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc2f.te Time Period: Day/Night 16/8 hours

Description: Loc 2 - Facade

Rail data, segment # 1: GEXR (day/night)

(10.00)													
Trai	n	į	Trains	ļ	Trains	!	Speed	!#	loc	! :	# Cars	! Eng	!Cont
Type		į	(Left)	!	(Right)	!	(km/h)	! /	Trair	1!,	/Train	! type	!weld
		-+-		-+-		-+		-+-		-+-		+	+
* 1.	Freight	!	1.8/0.0	!	1.8/0.0	1	88.0	1	2.0	Ī	59.0	!Diesel	! Yes
* 2.	Passenger	1	7.4/1.5	!	7.4/1.5	!	113.0	1	1.0	į	5.0	!Diesel	! Yes
* 3.	Commuter	!	3.8/1.3	1	3.8/1.3	!	113.0	1	1.0	į	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Trai	n type:	1	Unadj. Tra	ins	! Annual	용 !	Years o	f!		
No	Name	1	Left ! Ri	ght	! Increas	e!	Growth	1		
		+			-+	+		+		
1.	Freight	1	1.6/0.0	!	1.6/0.0	!	3.24	Ţ	3.00	Ţ
2.	Passenger	!	6.0/1.2	!	6.0/1.2	!	7.18	1	3.00	1
3.	Commuter	!	3.5/1.2	1	3.5/1.2	1	2.50	t	3.00	1

Data for Segment # 1: GEXR (day/night)

Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.)

No of house rows •

0 / 0 Surface (Absorptive ground surface) .

Receiver source distance : 44.00 / 44.00 mReceiver height : 1.50 / 7.50 m

: 3 (Elevated; no barrier) : 71 deg Track 1 Topography

Whistle Angle

Elevation : 6.50 m

Results segment # 1: GEXR (day)

LOCOMOTIVE (0.00 + 62.33 + 0.00) = 62.33 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

90 0.39 69.79 -6.50 -0.96 0.00 0.00 0.00 62.33 ______

WHEEL (0.00 + 53.45 + 0.00) = 53.45 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

90 0.50 61.61 -6.99 -1.17 0.00 0.00 0.00 53.45

LEFT WHISTLE (0.00 + 64.60 + 0.00) = 64.60 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-81 71 0.39 72.44 -6.50 -1.34 0.00 0.00 0.00 64.60

RIGHT WHISTLE (0.00 + 52.17 + 0.00) = 52.17 dBA

Angle1 Angle2 Alpha RefLeg D.Adj F.Adj W.Adj H.Adj B.Adj SubLeg

71 85 0.39 72.44 -6.50 -13.77 0.00 0.00 0.00 52.17

Segment Leq: 66.97 dBA

Total Leq All Segments: 66.97 dBA

House density

Topography

Surface

______ LOCOMOTIVE (0.00 + 58.70 + 0.00) = 58.70 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------90 90 0.21 64.92 -5.66 -0.56 0.00 0.00 0.00 58.70 ______ WHEEL (0.00 + 48.42 + 0.00) = 48.42 dBAAnglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.31 55.37 -6.15 -0.80 0.00 0.00 0.00 48.42 LEFT WHISTLE (0.00 + 61.88 + 0.00) = 61.88 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -81 71 0.21 68.61 -5.66 -1.08 0.00 0.00 0.00 61.88 RIGHT WHISTLE (0.00 + 50.45 + 0.00) = 50.45 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------71 85 0.21 68.61 -5.66 -12.51 0.00 0.00 0.00 50.45 ______ Segment Leq: 63.92 dBA Total Leq All Segments: 63.92 dBA Road data, segment # 1: Trafalgar Rd (day/night) -----Car traffic volume : 13296/1477 veh/TimePeriod Medium truck volume : 267/30 veh/TimePeriod * Heavy truck volume : 507/56 veh/TimePeriod * Posted speed limit : 80 km/h 0 % Road gradient : 1 (Typical asphalt or concrete) Road pavement . * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 10531 Percentage of Annual Growth : Number of Years of Growth : : 16.00 Medium Truck % of Total Volume : 1.90
Heavy Truck % of Total Volume : 3.60
Day (16 hrs) % of Total Volume : 90.00 Data for Segment # 1: Trafalgar Rd (day/night) Angle1 Angle2 : -90.00 deg -36.00 deg
Wood depth : 0 (No woods.) 1 / 1 No of house rows .

75 %

1

(Absorptive ground surface)

: 1 (Flat/gentle slope; no barrier)

:

.

Receiver source distance : 129.00 / 129.00 m Receiver height : 1.50 / 7.50 m $\,$

Road data, segment # 2: Trafalgar Rd (day/night) ____ Car traffic volume : 10030/1114 veh/TimePeriod Medium truck volume : 202/22 veh/TimePeriod Heavy truck volume : 382/42 veh/TimePeriod * Posted speed limit : 80 km/h Road gradient : 0 % 1 (Typical asphalt or concrete) Road pavement 20 * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 9485 Percentage of Annual Growth : 2.00
Number of Years of Growth : 11.00 Medium Truck % of Total Volume : 1.90 Heavy Truck % of Total Volume : 3.60 Day (16 hrs) % of Total Volume : 90.00 Data for Segment # 2: Trafalgar Rd (day/night) Angle1 Angle2 : -36.00 deg 19.00 deg Wood depth : 0 (No woods No of house rows : 0 / 1 House density : 20 % Surface : 1 (Absorption of the state of (No woods.) 1 : (Absorptive ground surface) Receiver source distance : 129.00 / 129.00 mReceiver height : 1.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Results segment # 1: Trafalgar Rd (day) -----Source height = 1.38 m ROAD (0.00 + 42.74 + 0.00) = 42.74 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 -36 0.66 71.03 0.00 -15.51 -7.79 0.00 -4.98 0.00 42.74

Segment Leq: 42.74 dBA

Results segment # 2: Trafalgar Rd (day) .

Source height = 1.38 m

ROAD (0.00 + 48.99 + 0.00) = 48.99 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _______ -36 19 0.66 69.80 0.00 -15.51 -5.29 0.00 0.00 0.00 48.99

Segment Leq: 48.99 dBA

Total Leg All Segments: 49.91 dBA

Results segment # 1: Trafalgar Rd (night) -----

Source height = 1.38 m

ROAD (0.00 + 38.44 + 0.00) = 38.44 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 -36 0.48 64.48 0.00 -13.87 -7.20 0.00 -4.98 0.00 38.44

Segment Leq: 38.44 dBA

Results segment # 2: Trafalgar Rd (night)

Source height = 1.37 m

ROAD (0.00 + 42.36 + 0.00) = 42.36 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

Segment Leg: 42.36 dBA

Total Leq All Segments: 43.84 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 67.05

(NIGHT): 63.96

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:40:20

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc3f.te Time Period: Day/Night 16/8 hours

Description: Location 3 - South Facade

Rail data, segment # 1: GEXR (day/night)

Train Type		Trains (Left)		Trains (Right)	!	(km/h)	! /	Train	!/Train	s! Eng n! type	!weld
* 1. Freight * 2. Passenger * 3. Commuter	!	1.8/0.0 7.4/1.5 3.8/1.3	!	1.8/0.0 7,4/1.5 3.8/1.3	!	88.0 113.0	!	2.0	. 59.0 . 5.0	!Diesel !Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type:	!	Unadj. Tra	ains	! Annual	용!	Years o	f!		
No Name	!	Left ! R	ight	! Increas	se!	Growth	Ī		
	+-			-+	+		+		
1. Freight	!	1.6/0.0	!	1.6/0.0	<u>!</u>	3.24	Į.	3.00	1
2. Passenger	!	6.0/1.2	!	6.0/1.2	Ī	7.18	1	3.00	!
3. Commuter	!	3.5/1.2	!	3.5/1.2	1	2.50	1	3.00	!

Data for Segment # 1: GEXR (day/night)

Angle1 Angle2	:	-90.00	deg	90.00 deg
Wood depth	1	0		(No woods.)
No of house rows	:	0	/ 0	
Surface	:	1		(Absorptive ground surface)
Receiver source distance	:	44.00	/ 44.0	00 m
Receiver height	:	1.50	/ 7.50	O m
Topography	:	3		(Elevated; no barrier)
Whistle Angle	:	81	deg	Track 1
Elevation	:	6.50	m	

Results segment # 1: GEXR (day)

LOCOMOTI Angle1 A							H.Adj	B.Adj	SubLeq
-90	90	0.39	69.79	-6.50	-0.96	0.00	0.00	0.00	62.33
WHEEL (0 Angle1 A	.00 + 5	53.45 + Alpha I	0.00) RefLeq	= 53.45 D.Adj	F.Adj				
-90	90		61.61	-6.99	-1.17		T 0 T T		
LEFT WHI	STLE (0.00 + 0	64.58 +	0.00)	= 64.58	dBA			

Anglol	Anglo?	Alpha	RefLeq	D Adi	E 7di	M Adi	H 744	B 7/di	SubTog
_	_	-	_	-			_	_	_
			72.44						

RIGHT WHISTLE	(0.00 + 46.86	+ 0.00) = 46.8	86 dBA			
Angle1 Angle2	Alpha RefLeq	D.Adj F.Adj				
81 86	0.39 72.44	-6.50 -19.08	0.00	0.00	0.00	46.86

Segment Leq: 66.86 dBA

Total Leq All Segments: 66.86 dBA

LOCOMOTIVE (0.00 + 58.70 + 0.00) = 58.70 dBA
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
-90 90 0.21 64.92 -5.66 -0.56 0.00 0.00 0.00 58.70

WHEEL (0.00 + 48.42 + 0.00) = 48.42 dBA Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.31 55.37 -6.15 -0.80 0.00 0.00 0.00 48.42

LEFT WHISTLE (0.00 + 61.86 + 0.00) = 61.86 dBA
Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
-70 81 0.21 68.61 -5.66 -1.09 0.00 0.00 0.00 61.86

RIGHT WHISTLE (0.00 + 45.61 + 0.00) = 45.61 dBA Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 81 86 0.21 68.61 -5.66 -17.35 0.00 0.00 0.00 45.61

Segment Leg: 63.77 dBA

Total Leg All Segments: 63.77 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 66.86

(NIGHT): 63.77

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:40:33 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Time Period: Day/Night 16/8 hours Filename: loc3r.te

Description: Location 3 - Rear yard

Rail data, segment # 1: GEXR (day/night)

Train Type	ļ	Trains	!	(km/h)	1/	Trair	ı!,	/Train	! Eng ! type	!weld
* 1. Freight	!	3.5/0.0			-		1,00		!Diesel	
* 2. Passenger	!	14.8/3.0	1	113.0	Ţ	1.0	1	5.0	!Diesel	! Yes
* 3. Commuter	1	7.6/2.6	. !	113.0	1	1.0	!	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type: No Name	1	Unadj. ! A Trains ! I	ncrea	se! G	rowt	h!	
1. Freight	+- !	3.2/0.0	1	3.24	!	3.00	1
2. Passenger	!	12.0/2.4	4	7.18	Ţ	3.00	1
3. Commuter	Ţ	7.1/2.4	1	2.50	Ī	3.00	!

Data for Segment # 1: GEXR (day/night) -----

Angle1 Angle2 : -90.00 deg -45.00 deg

Wood depth : 0 (No woods.)

No of house rows : 0 / 0

Surface : 1 (Absorptive ground surface)

Receiver source distance : 64.00 / 64.00 m

Receiver height : 1.50 / 4.50 m

Topography : 3 (Elevated; no barrier)

No Whistle

Elevation : 5.65 m

Rail data, segment # 2: GEXR (day/night)

Trai Type		!	Trains	!	(km/h)	!/	Trair	1!,	/Train	! Eng ! type	!weld
	Freight Passenger	1	3.5/0.0 14.8/3.0	!	88.0	į	2.0	į	59.0	!Diesel	! Yes
	Commuter	ļ	7.6/2.6							!Diesel	

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type: No Name	!	Unadj. ! Ar Trains ! Ir	ncrea	ase! G	rowt	ch!	
 Freight Passenger Commuter 	!!	3.2/0.0 12.0/2.4 7.1/2.4	!	3.24 7.18 2.50	!	3.00 3.00	!

Data for Segment # 2: GEXR (day/night)

Angle1 Angle2 : -45.00 deg Wood depth : 0 90.00 deg (No woods.)

: No of house rows

1 / 0 1 Surface (Absorptive ground surface) .

Receiver source distance : 64.00 / 64.00 mReceiver height : 1.50 / 4.50 m

3 (Elevated; no barrier) Topography 2

No Whistle

Elevation 5.65 m

Results segment # 1: GEXR (day) _____

LOCOMOTIVE (0.00 + 52.79 + 0.00) = 52.79 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 -45 0.42 69.75 -8.92 -8.04 0.00 0.00 0.00 52.79

WHEEL (0.00 + 43.48 + 0.00) = 43.48 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

______ _____ -90 -45 0.52 61.54 -9.58 -8.49 0.00 0.00 0.00 43.48

Segment Leg: 53.27 dBA

Results segment # 2: GEXR (day)

LOCOMOTIVE (0.00 + 49.51 + 0.00) = 49.51 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

90 0.42 69.75 -8.92 -1.97 0.00 -9.35 0.00 49.51 -45

WHEEL (0.00 + 40.50 + 0.00) = 40.50 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-45 90 0.52 61.54 -9.58 -2.11 0.00 -9.35 0.00 40.50 ______

Segment Leq: 50.02 dBA

Total Leq All Segments: 54.95 dBA

TOTAL Leg FROM ALL SOURCES (DAY): 54.95

(NIGHT): 56.12

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:41:00

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc4f.te Time Period: Day/Night 16/8 hours

Description: Location 4 - East Facade

Rail data, segment # 1: GEXR (day/night)

	rai ype		-	Trains (Left)		Trains (Right)	1	(km/h)	! /	/Train	! /	Train	! Eng ! type +	!weld
*	1.	Freight	1	1.8/0.0	į	1.8/0.0							!Diesel	
*	2.	Passenger	1	7.4/1.5	1	7.4/1.5	1	113.0	İ	1.0	!	5.0	!Diesel	! Yes
*	3.	Commuter	1	3.8/1.3	1	3.8/1.3	1	113.0	ļ	1.0	!	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type: No Name	!!	Unadj. Trains Left! Right	! Annual % ! ! Increase !		
1. Freight 2. Passenger	!	1.6/0.0 ! 6.0/1.2 !	1.6/0.0 ! 6.0/1.2 !	3.24 ! 7.18 !	3.00 !
3. Commuter	i	3.5/1.2 !	3.5/1.2	2.50 !	3.00 !

Data for Segment # 1: GEXR (day/night) ______

Angle1 Angle2 : -90.00 deg -5.00 deg : 0 Wood depth (No woods.)

No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 79.00 / 79.00 m Receiver height : 1.50 / 7.50 m

: 3 (Elevated; no barrier) : 74 deg Track 1 Topography

Whistle Angle 100

Elevation 1 6.50 m

Results segment # 1: GEXR (day) ______

LOCOMOTIVE (0.00 + 55.48 + 0.00) = 55.48 dBAAnglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-90 -5 0.39 69.79 -10.03 -4.28 0.00 0.00 0.00 55.48

WHEEL (0.00 + 46.32 + 0.00) = 46.32 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 -5 0.50 61.61 -10.79 -4.50 0.00 0.00 0.00 46.32 _______

LEFT WHISTLE (0.00 + 56.72 + 0.00) = 56.72 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _______

-58 -5 0.00 72.44 0.00 -5.68 0.00 0.00 0.00 56.72 ______

Segment Leg: 59.37 dBA

Total Leq All Segments: 59.37 dBA

LOCOMOTIVE (0.00 + 52.33 + 0.00) = 52.33 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 -5 0.21 64.92 -8.73 -3.86 0.00 0.00 0.00 52.33

WHEEL (0.00 + 41.77 + 0.00) = 41.77 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 -5 0.31 55.37 -9.49 -4.11 0.00 0.00 0.00 41.77

LEFT WHISTLE (0.00 + 54.35 + 0.00) = 54.35 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-58 -5 0.00 68.61 0.00 -5.53 0.00 0.00 0.00 54.35

Segment Leq: 56.61 dBA

Total Leq All Segments: 56.61 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 59.37 (NIGHT): 56.61

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:41:26

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc5f.te Time Period: Day/Night 16/8 hours

Description: Location 5 - Southeast Facade

Rail data, segment # 1: GEXR (day/night)

Train	!	Trains	1	Trains	1	Speed	!#	loc	! #	† Cars	! Eng	!Cont
Type	1	(Left)	Ţ	(Right)	į	(km/h)	! /	Trair	1!/	/Train	! type	!weld
	+-		+-		+		-+-		-+-		+	+
* 1. Freight	!	1.8/0.0	1	1.8/0.0	1	88.0	!	2.0	1	59.0	!Diesel	! Yes
* 2. Passenger	1	7.4/1.5	1	7.4/1.5	!	113.0	i	1.0	1	5.0	!Diesel	! Yes
* 3. Commuter	!	3.8/1.3	1	3.8/1.3	!	113.0	!	1.0	!	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train	type:	1	Unadj. Tra	ins	! Annual	용!	Years o	f!		
No No	ame	1	Left ! Ri	ght	! Increas	e !	Growth	1		
		+	+		-+	+		+		
1. F	reight	Ţ	1.6/0.0	!	1.6/0.0	!	3.24	Ī	3.00	1
2. Pa	assenger	Ţ	6.0/1.2	1	6.0/1.2	!	7.18	1	3.00	1
3. C	ommuter	Ţ	3.5/1.2	!	3.5/1.2	1	2.50	1	3.00	1

Data for Segment # 1: GEXR (day/night) -----

Angle1 Angle2 : -90.00 deg 0.00 deg Wood depth : 0 (No woods.)

No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 125.00 / 125.00 m Receiver height : 1.50 / 7.50 m

: 3 (Elevated; no barrier) : 74 deg Track 1 Topography

Whistle Angle :

Elevation : 6.50 m

Results segment # 1: GEXR (day)

LOCOMOTIVE (0.00 + 53.02 + 0.00) = 53.02 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 0 0.39 69.79 -12.80 -3.97 0.00 0.00 0.00 53.02

WHEEL (0.00 + 43.66 + 0.00) = 43.66 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-90 0 0.50 61.61 -13.77 -4.18 0.00 0.00 0.00 43.66 ______

LEFT WHISTLE (0.00 + 54.35 + 0.00) = 0.00 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _______

16 0 0.00 72.44 0.00 -5.53 0.00 0.00 0.00 54.35

Segment Leg: 53.50 dBA

Total Leq All Segments: 53.50 dBA

LOCOMOTIVE (0.00 + 50.20 + 0.00) = 50.20 dBA Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 0 0.21 64.92 -11.14 -3.57 0.00 0.00 0.00 50.20

WHEEL (0.00 + 39.45 + 0.00) = 39.45 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 0 0.31 55.37 -12.11 **-**3.81 0.00 0.00 0.00 39.45

LEFT WHISTLE (0.00 + 54.35 + 0.00) = 0.00 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

16 0 0.00 68.61 0.00 -5.53 0.00 0.00 0.00 54.35

Segment Leq: 50.55 dBA

Total Leg All Segments: 50.55 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 53.50

(NIGHT): 50.55

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:41:53

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc6f.te Time Period: Day/Night 16/8 hours

Description: Location 6 - North Façade

Rail data, segment # 1: GEXR (day/night)

Train	1	Trains	ļ	Speed	!#	loc	!#	Cars!	Eng	!Cont
Type	Ţ		İ	(km/h)	!/	Trair	1!/	Train!	type	!weld
							200			

- * 1. Freight ! 3.5/0.0 ! 88.0 ! 2.0 ! 59.0 !Diesel! Yes * 2. Passenger ! 14.8/3.0 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
- * 3. Commuter ! 7.6/2.6 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
- * The identified number of trains have been adjusted for future growth using the following parameters:

Train	n type:	!	Unadj.	1	Annual	용	İ.	Years	of	!
No	Name	!	Trains	!	Increas	е	i	Growt	h	ţ
		+		+-			+			-+
1	Freight	1	3 2/0) (1	3	2	4 1		3 00

 1. Freight
 !
 3.2/0.0
 !
 3.24
 !
 3.00
 !

 2. Passenger
 !
 12.0/2.4
 !
 7.18
 !
 3.00
 !

 3. Commuter
 !
 7.1/2.4
 !
 2.50
 !
 3.00
 !

Data for Segment # 1: GEXR (day/night) _____

Angle1 Angle2 : -21.00 deg 7.00 deg Wood depth : 0 (No woods.)

No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 167.00 / 167.00 m Receiver height : 1.50 / 7.50 m

: 3 (Elevated; no barrier) Topography

No Whistle

: 6.50 m Elevation

Results segment # 1: GEXR (day)

LOCOMOTIVE (0.00 + 47.09 + 0.00) = 47.09 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

______ -21 7 0.39 69.75 -14.55 -8.11 0.00 0.00 0.00 47.09 ______

WHEEL (0.00 + 37.78 + 0.00) = 37.78 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

______ -21 7 0.50 61.54 -15.65 -8.12 0.00 0.00 0.00 37.78

Segment Leg: 47.57 dBA

Total Leg All Segments: 47.57 dBA

LOCOMOTIVE (0.00 + 44.16 + 0.00) = 44.16 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-21 7 0.21 64.92 -12.66 -8.10 0.00 0.00 0.00 44.16

WHEEL (0.00 + 33.50 + 0.00) = 33.50 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-21 7 0.31 55.37 -13.76 -8.11 0.00 0.00 0.00 33.50

Segment Leq: 44.52 dBA

Total Leq All Segments: 44.52 dBA

Road data, segment # 1: Highway 7 (day/night)

Car traffic volume : 13431/2370 veh/TimePeriod *

Medium truck volume : 373/66 veh/TimePeriod * Heavy truck volume : 560/99 veh/TimePeriod *

Posted speed limit : 80 km/h 0 % Road gradient :

Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 16900 Percentage of Annual Growth : 0.00 Number of Years of Growth : 10.00 Medium Truck % of Total Volume : 2.60
Heavy Truck % of Total Volume : 3.90
Day (16 hrs) % of Total Volume : 85.00

Data for Segment # 1: Highway 7 (day/night)

Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods No of house rows : 0 / 0 Surface : 1 (Absorption (No woods.)

(Absorptive ground surface)

Receiver source distance : 45.00 / 45.00 m Receiver height : 1.50 / 7.50 m

Topography 3 (Elevated; no barrier) •

: 3.00 m Elevation

Results segment # 1: Highway 7 (day) -----

Source height = 1.41 m

ROAD (0.00 + 62.61 + 0.00) = 62.61 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.57 71.42 0.00 -7.50 -1.31 0.00 0.00 0.00 62.61

Segment Leg: 62.61 dBA

Total Leq All Segments: 62.61 dBA

Results segment # 1: Highway 7 (night)

Source height = 1.41 m

ROAD (0.00 + 59.29 + 0.00) = 59.29 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.39 66.90 0.00 -6.65 -0.97 0.00 0.00 0.00 59.29

Segment Leq: 59.29 dBA

Total Leq All Segments: 59.29 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 62.74

(NIGHT): 59.43

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:42:14 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc7f.te Time Period: Day/Night 16/8 hours

Description: Location 7 - North Facade

Rail data, segment # 1: GEXR (day/night)

Trai	n	!	Trains	į	Speed	!#	loc	! :	# Cars	s! Eng	!Cont
Type		!		!	(km/h)	!/	Trair	1!,	/Trair	n! type	!weld
		-+		-+		-+-		+-		+	+
* 1.	Freight	!	3.5/0.0	!	88.0	!	2.0	!	59.0	!Diesel	! Yes
* 2.	Passenger	!	14.8/3.0	Ţ	113.0	İ	1.0	!	5.0	!Diesel	! Yes
* 3.	Commuter	!	7.6/2.6	!	113.0	Ţ	1.0	Ţ	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Trai: No	n type: Name		Unadj.! Trains!					
		-+-	+-		+		+	
1.	Freight	ļ.	3.2/0.0	1	3.24	1	3.00	!
2.	Passenger	1	12.0/2.4	1	7.18	1	3.00	1
3.	Commuter	!	7.1/2.4	1	2.50	1	3.00	!

Data for Segment # 1: GEXR (day/night)

Angle1 Angle2 : -21.00 deg 7.00 deg : 0 Wood depth (No woods.)

No of house rows : 3 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance : 164.00 / 164.00 m Receiver height : 1.50 / 7.50 m

3 (Elevated; no barrier) Topography :

No Whistle

Elevation : 6.50 m

Results segment # 1: GEXR (day) ------

LOCOMOTIVE (0.00 + 37.94 + 0.00) = 37.94 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-21 7 0.39 69.75 -14.44 -8.11 0.00 -9.25 0.00 37.94

WHEEL (0.00 + 28.64 + 0.00) = 28.64 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

_____ -21 7 0.50 61.54 -15.53 -8.12 0.00 -9.25 0.00 28.64

Segment Leq: 38.42 dBA

Total Leq All Segments: 38.42 dBA

LOCOMOTIVE (0.00 + 44.25 + 0.00) = 44.25 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-21 7 0.21 64.92 -12.57 -8.10 0.00 0.00 0.00 44.25

WHEEL (0.00 + 33.60 + 0.00) = 33.60 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-21 7 0.31 55.37 -13.66 -8.11 0.00 0.00 0.00 33.60

Segment Leq: 44.61 dBA

Total Leg All Segments: 44.61 dBA

Road data, segment # 1: Highway 7 (day/night)

Car traffic volume : 13431/2370 veh/TimePeriod * Medium truck volume: 373/66 veh/TimePeriod
Heavy truck volume: 560/99 veh/TimePeriod Heavy truck volume : 560/99 veh/TimePeriod *

Posted speed limit : 80 km/h 0 % Road gradient :

Road pavement . 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 16900 Percentage of Annual Growth : 0.00 Number of Years of Growth : 10.00 Medium Truck % of Total Volume : 2.60
Heavy Truck % of Total Volume : 3.90
Day (16 hrs) % of Total Volume : 85.00

Data for Segment # 1: Highway 7 (day/night)

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods No of house rows : 0 / 0 Surface : 1 (Absorption (No woods.)

(Absorptive ground surface)

Receiver source distance : 49.00 / 49.00 m Receiver height : 1.50 / 7.50 m

Topography 3 (Elevated; no barrier) .

: 3.00 m Elevation

Results segment # 1: Highway 7 (day) -----

Source height = 1.41 m

ROAD (0.00 + 62.03 + 0.00) = 62.03 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 90 0.57 71.42 0.00 -8.09 -1.31 0.00 0.00 0.00 62.03

Segment Leg: 62.03 dBA

Total Leq All Segments: 62.03 dBA

Results segment # 1: Highway 7 (night)

Source height = 1.41 m

ROAD (0.00 + 58.78 + 0.00) = 58.78 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.39 66.90 0.00 -7.16 -0.97 0.00 0.00 0.00 58.78

Segment Leq: 58.78 dBA

Total Leq All Segments: 58.78 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 62.05 (NIGHT): 58.94

STAMSON 5.0 NORMAL REPORT Date: 25-06-2015 02:43:17

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: loc9.te Time Period: Day/Night 16/8 hours

Description: Location 9 - Rear yard - With Barrier

Rail data, segment # 1: GEXR (Row E) (day/night)

Train	!	Trains							s! Eng	
Туре	1		1	(km/h)	!/	Trair	1!,	/Trair	1! type	!weld
	-+		-+-		-+-		++		-+	-+
* 1. Freight	1	3.5/0.0	1	88.0	!	2.0	!	59.0	!Diesel	! Yes
* 2. Passenger	į	14.8/3.0	!	113.0	1	1.0	1	5.0	!Diesel	! Yes
* 3. Commuter	Ţ	7.6/2.6	1	113.0	!	1.0	1	5.0	!Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Train type:	1	Unadj.!	Annual	용!	Years	of!	
No Name	i	Trains !	Increa	se!	Growt	th!	
	+-	+-		+-		+	
1. Freight	į	3.2/0.0	!	3.2	4 !	3.00	!
2. Passenger	Į.	12.0/2.4	1!	7.1	8 !	3.00	1
3. Commuter	į	7.1/2.4	1 1	2.5	0 !	3.00	1

Data for Segment # 1: GEXR (Row E) (day/night)

Angle1 Angle2 : -90.00 deg -20.00 deg Wood depth : 0 (No woods.) Wood depth : 0
No of house rows : 1 / 0
Surface : 1 (No woods.)

(Absorptive ground surface)

Receiver source distance : 67.00 / 67.00 m Receiver height : 1.50 / 4.50 m

: 3 (Elevated; no barrier) Topography

No Whistle

Elevation : 5.65 m

Rail data, segment # 2: GEXR (day/night)

Train Type	!	Trains	Ī	(km/h)	!/	Trair	i!,	/Trair	s! Eng n! type	!weld
* 1. Freight * 2. Passenger * 3. Commuter	!!!	3.5/0.0 14.8/3.0 7.6/2.6	! !	88.0 113.0	!	2.0	ļ ļ	59.0 5.0	!Diesel !Diesel !Diesel	! Yes

* The identified number of trains have been adjusted for future growth using the following parameters:

Name								i	
 Freight	-+ !	3.2/0	+-) ! :	-+- 3.2	24!		-+ 3.00	!
Passenger	1	12.0/2	. 4	1 1 '	7.	18!		3.00	1
Commuter	1	7.1/2	. 4	1 1 :	2.5	50 !		3.00	1
		Name !+ Freight ! Passenger !	Name ! Trains Freight ! 3.2/0 Passenger ! 12.0/2	Name ! Trains! Freight ! 3.2/0.0 Passenger ! 12.0/2.4	Name ! Trains ! Increase	Name ! Trains ! Increase ! Freight ! 3.2/0.0 ! 3.2 Passenger ! 12.0/2.4 ! 7.2	Name ! Trains ! Increase ! Gro Freight ! 3.2/0.0 ! 3.24 ! Passenger ! 12.0/2.4 ! 7.18 !	Name ! Trains ! Increase ! Growth Freight ! 3.2/0.0 ! 3.24 ! Passenger ! 12.0/2.4 ! 7.18 !	Freight ! 3.2/0.0 ! 3.24 ! 3.00 Passenger ! 12.0/2.4 ! 7.18 ! 3.00

```
Data for Segment # 2: GEXR (day/night)
______
Angle1 Angle2 : -20.00 deg
Wood depth : 0
                                   46.00 deg
                                    (No woods.)
                          0 / 0
No of house rows
Surface
                            1
                                   (Absorptive ground surface)
Receiver source distance : 67.00 / 67.00 m
Receiver height : 1.50 / 4.50 m
                           4
                                  (Elevated; with barrier)
Topography
                     :
No Whistle
               : -20.00 deg Angle2 : 46.00 deg
: 2.60 m
: 5.65 m
Barrier angle1
Barrier height
Elevation
Barrier receiver distance: 9.00 / 9.00 m
Source elevation : 277.50 m
Receiver elevation : 272.00 m
Barrier elevation : 272.00 m
Rail data, segment # 3: GEXR (Row W) (day/night)
_____
             ! Trains ! Speed !# loc !# Cars! Eng !Cont
! (km/h) !/Train!/Train! type !weld
Train
Type
_________________
* 1. Freight ! 3.5/0.0 ! 88.0 ! 2.0 ! 59.0 !Diesel! Yes * 2. Passenger ! 14.8/3.0 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
* 3. Commuter ! 7.6/2.6 ! 113.0 ! 1.0 ! 5.0 !Diesel! Yes
* The identified number of trains have been adjusted for
 future growth using the following parameters:
Irain type: ! Unadj. ! Annual % ! Years of !
No Name ! Trains ! Increase ! Growth !
Train type:
______
 1. Freight ! 3.2/0.0 ! 3.24 ! 3.00 ! 2. Passenger ! 12.0/2.4 ! 7.18 ! 3.00 ! 3. Commuter ! 7.1/2.4 ! 2.50 ! 3.00 !
Data for Segment # 3: GEXR (Row W) (day/night)
______
Angle1 Angle2 : 46.00 deg
Wood depth : 0
                                   90.00 deg
                         0
                    .
Wood depth
                                   (No woods.)
                          1 / 0
No of house rows
                      :
                                   (Absorptive ground surface)
Surface
                       :
Receiver source distance : 67.00 / 67.00 m
Receiver height : 1.50 / 4.50 m
Topography
                           3 (Elevated; no barrier)
                      :
No Whistle
Elevation
                         5.65 m
                      •
Results segment # 1: GEXR (Row E) (day)
_____
LOCOMOTIVE (0.00 + 45.80 + 0.00) = 45.80 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
-90 -20 0.42 69.75 -9.20 -5.44 0.00 -9.31 0.00 45.80
WHEEL (0.00 + 36.64 + 0.00) = 36.64 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
_____
  -90 -20 0.52 61.54 -9.88 -5.72 0.00 -9.31 0.00 36.64
```

Results segment # 2: GEXR (day)

Barrier height for grazing incidence

LOCOMOTIVE (0.00 + 52.11 + 0.00) = 52.11 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-20 46 0.26 69.75 -8.19 -4.45 0.00 0.00 -5.00 52.11

WHEEL (0.00 + 42.47 + 0.00) = 42.47 dBA
Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-20 46 0.36 61.54 -8.87 -4.49 0.00 0.00 -5.72 42.47

Segment Leg: 52.56 dBA

Results segment # 3: GEXR (Row W) (day)

LOCOMOTIVE (0.00 + 43.06 + 0.00) = 43.06 dBA
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
46 90 0.42 69.75 -9.20 -8.18 0.00 -9.31 0.00 43.06

WHEEL (0.00 + 33.72 + 0.00) = 33.72 dBA
Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
46 90 0.52 61.54 -9.88 -8.63 0.00 -9.31 0.00 33.72

Segment Leq: 43.54 dBA

Total Leq All Segments: 53.90 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 53.90

APPENDIX C: WARNING CLAUSES

WARNING CLAUSE "A"

"Purchasers are advised that despite the inclusion of noise control features in this development area and within the building units, sound levels from increasing road and/or rail traffic will continue to be of concern, occasionally interfering with some activities of the dwelling occupants as the sound level exceeds the municipality's and the Ministry of the Environment's noise criteria. Air-conditioning has been installed to achieve adequate interior sound levels."

"This dwelling unit was fitted with a central air-conditioning unit. (Note: locate air-cooled condenser unit in a noise-insensitive area.)"

Note: The Ministry of the Environment requires that the central air-conditioning devices must have a sound rating not exceeding 7.6 bels for those manufactured after January 1, 1992.

WARNING CLAUSE "B"

"Purchasers are advised that despite the inclusion of noise control features in this development area and within the building units, sound levels from increasing road and/or rail traffic may continue to be of concern, occasionally interfering with some activities of the dwelling occupants as the sound level exceeds the municipality's and the Ministry of the Environment's noise criteria."

"This dwelling unit was fitted with a forced air heating system with provision for future air-conditioning (Note: locate air-cooled condenser unit in a noise-insensitive area.)"

Note: The Ministry of the Environment requires that the central air-conditioning devices must have a sound rating not exceeding 7.6 bels for those manufactured after January 1, 1992.

WARNING CLAUSE "C"

This is applicable to all units and should be inserted in all development agreements, offers to purchase, and *Agreements of Purchase and Sale* of each dwelling unit within 300 m of the railway right-of-way:

"Warning: GEXR or its assigns or successors in interest has or have a right-of-way within 300 metres from the land the subject hereof. There may be alterations to or expansions of the railway facilities of such right-of-way in the future including the possibility that the railway or its assigns or successors as aforesaid may expand its operations, which expansion may affect the living environment of the residents in the vicinity, notwithstanding the inclusion of any noise and vibration attenuating measures in the design of the development and individual dwelling(s). GEXR will not be responsible for any complaints or claims arising from use of such facilities and/or operations on, over or under the aforesaid rights-of-way."

APPENDIX D: NOISE CRITERIA

The noise study will be based on the following criteria for residential units as required by the Ministry of the Environment and CN Rail:

Ministry of the Environment Noise Criteria (NPC-300)

Bedroom areas (2300 - 0700 hours) = 40 dB L_{eq} Roadway noise only

Bedroom areas (2300 - 0700 hours) = 35 dB L_{eq} (including 5 dB adjustment for railway noise only)

Living/dining room areas (0700 - 2300 hours) = 45 dB L_{eq} Roadway noise only

Living/dining room areas (0700 - 2300 hours) = 40 dB L_{eq} (including 5 dB adjustment for railway noise only)

Outdoor areas (0700 - 2300 hours) = $55 \text{ dB } L_{eq}$

Railways Noise Criteria (Reference 3)

Bedroom areas (2300 - 0700 hours) = 35 dB L_{eq}

Bedroom areas (0700 - 2300 hours) = 35 dB L_{eq}

Living/dining room areas (0700 - 2300 hours) = 40 dB L_{eq}

Living/dining room areas (2300 - 0700 hours) = 40 dB L_{eq}

Outdoor areas (0700 - 2300 hours) = 55 dB L_{eq}

All road and railway traffic sound level calculations were based on the Site Plan by Glenn Schnarr & Associates, dated May 26, 2015.

L_{eq} (Definition)

The L_{eq} is defined as the mean energy of the noise level averaged over the measurement period. It can be considered as the continuous steady noise level which would have the same acoustic energy as the real fluctuating noise measured over the same period of time.

APPENDIX E: REFERENCES AND CORRESPONDENCE

- 1. "Policy On The Environmental Protection of New Residential Development Adjacent to Railways: Recommended by CN and CP Rail," May 1983.
- Ministry of the Environment's STAMSON Computer Programme (Version 5.03) for the IBM PC.
- 3. Ministry of the Environment, *ORNAMENT*, "Ontario Road Noise Analysis Method for Environment and Transportation," November 1988.
- 4. Ministry of the Environment, "Publication NPC-300, Environmental Noise Guideline Stationary and Transportation Sources Approval and Planning", August 2013.
- 5. Quirt, D.J., "Controlling Sound Transmission into Buildings," National Research Council, Building Practice Note 56.