

CONSULTING ENGINEERS, PLANNERS, PROJECT MANAGERS

85 IRONDALE DRIVE, SUITE 100 NORTH YORK, ONTARIO M9L 256 www.condeland.com TELEPHONE: (416) 745-0833 FACSIMILE: (416) 745-0179

TABLE OF CONTENTS

		PAG	€ NO.
A.O.	INTRODUCTIO	N	4
B.O.	EXISTING TOP	Pographical Characteristics	5
C.O.	Sanitary se	wage conveyance and treatment	6-9
D.0.	WATER SUPP	PLY AND DISTRIBUTION	10-11
€.0.	PROPOSED I	road grade and lot grading design	12-13
f.0.	STORMWAT	er management quantity and quality control	14-17
G.0.	PROPOSED	erosion control measures	17
H.O.	CONCLUSION	is and recommendation	18
APPE	:NDIX 'A'	Draft Plan of Subdivision prepared by Matthews Planning Ltd.	∆ Management
APPE	NDIX 'B'	Sanitary Servicing	
	APPENDIX 'B'	 Excerpts from Master Servicing Plan and Financial Implemental Sanitary and Water Servicing prepared by Stantec Consulting July 30, 2007: Section 3.1 - Sanitary Servicing Requirement Figure 3 — Sanitary Drainage Area Plan Section 5.3.2 - Preliminary Design, Reserve Capacity, of for Upgrading Sanitary Sewer Design Sheet 	g ltd. dated

APPENDIX 'B2' Pump Station Site Plan & Main Street Plan & Profile As Built drawings prepared

by Stantec Consulting Ltd.

APPENDIX 'B3' Internal and External Sanitary Sewer Design Sheets prepared by Condeland Engineering Limited

APPENDIX 'C' Stormwater Management

- Summary Output files of SWMHYMO modeling
- Pre-development 2 year, 5 year, 25 year, 50 year, 100 year
- Post-development 2 year, 5 year, 25 year, 50 year, 100 year

APPENDIX 'D' Conceptual Design Figures

- Fig. 1, Glen Williams Pump Station Sanitary Tributary Plan
- Fig. 2, Sanitary Drainage Area Plan
- Fig. 3, General Servicing Plan
- Fig. 4, Proposed Grading Plan
- Fig. 5, Pre-development Storm Drainage Area Plan
- Fig. 6, Post-development Storm Drainage Area Plan

A.O. INTRODUCTION

The 2147925 Ontario Inc. property is located south-west of McMaster Street and Meagan Drive and immediately south of the former railway line, in the Hamlet of Glen Williams, Town of Halton Hills. South-west of the property is Eighth (8th) Line road. The site is surrounded by existing low density residential areas with open agricultural lands abutting the north-west limit. The site area is approximately 6.88 Hectares (17.00 Acres) in size and is irregular in shape. 2147925 Ontario Inc. proposes to develop the above site as a single family house development consisting of a total of 32 units. Refer to Appendix 'A' for the proposed Draft Plan of Subdivision as prepared by Mathews Planning and Management Ltd. which also includes a site location map (key plan).

In support of the proposed development, we provide this report to identify the methodology of the municipal servicing. This report will provide rationale and justification for proposed municipal services for the development; more specifically the report will substantiate the ability to provide municipal sanitary sewer, municipal water and a conceptual resolution for storm water management.

The conceptual engineering designs developed and evaluated herein for the provision of municipal servicing systems in support of the proposed development are in general conformity with good engineering practices and the guidelines and criteria of the Town of Halton Hills, Credit Valley Conservation Authority, and the Ministry of the Environment.

B.O EXISTING TOPOGRAPHICAL CHARACTERISTICS AND DRAINAGE PATTERNS.

The natural topography for the site falls from the north at an approximate elevation of 275.00 metres to the south (at 271.00m) with average 1.0% slope.

The site for the most part is void of trees with the exception to the south boundary where there are small groupings of trees. Given the type of development proposed and the nature of disturbance related to construction activities and grading changes, we anticipate these trees can be preserved. The site drains in four main directions. Approximately, 39% of the site (2.056 Ha) drains towards the existing ditch on 8th Line via two 450mm diameter culverts. The south part of the property, approximately (1.731 Ha) and (2.892 Ha) drains towards existing 450mm Dia. culvert located on the 8th line Road via existing ditches. The runoff is then captured by DICB which routes the flow using a 675mm Dia, concrete STM pipe located on the south side of 8th line running parallel with the eighth line. The final destination of the runoff is Silver Creek through road side ditches of Wildwood Road. The balance pf the of the site drains towards outlet 5 using existing ditch along former railway right-of way. Refer to Figure 5, Pre-development Storm Drainage Plan in Appendix 'D' for an illustration of the existing drainage patterns.

C.O. SANITARY SEWAGE CONVEYANCE AND TREATMENT

C.1. Sanitary Servicing and Conveyance

To substantiate the ability to provide sanitary servicing for the 2147925 Ontario Inc. development a conceptual sanitary sewage conveyance system is detailed as follows.

A gravity sanitary sewer system is proposed to service all 32 residential lots of the subject development. Refer to Appendix 'D' for Figure 2, Sanitary Drainage Area Plan detailing sanitary drainage catchments for the subject lands. As identified on the plan a proposed 250mm diameter sanitary sewer can easily accommodate sanitary flows from the proposed development. It is also acknowledged the gradient of the sanitary sewer will be a minimum of 1% as required by the Region of Halton. Also included on Figure 2 is the proposed sanitary sewer design chart and as indicated the invert elevation of the sewer at its upstream end (MH15A) is 271.90 metres which is approximately 2.5 metres below finished road grade, having more than sufficient depth to service the residential lots

To convey flows to the Glen Williams Pump Station an external sanitary conveyance sewer is required. The route of the proposed external sewer is illustrated on Figure 1 in Appendix 'D' and extends from property limit at Meagan Drive, easterly along Oak Ridge Drive, northerly along Wildwood Road to Confederation Street, and then crossing the Credit River to the Glen Williams Pump Station (off Main

C.2. Glen Williams Pump Station Capacity Analysis

Figure 1 (Appendix 'D') illustrates the proposed / existing tributary sanitary drainage areas to the Glen Williams Pump Station and incorporates; the existing Sheridan development, Future Bayfield and Rinaldi

Street).

developments off of Confederation Street, existing residential and commercial areas, an existing school, and the Subject development lands – 2147925 Ontario Inc. (Devins).

We reviewed the Stantec Consulting Ltd.'s "Master Servicing Plan and Financial Implementation Report — Sanitary and Water Servicing" Report which spoke to basically the same drainage area as described above. Excerpts of the Stantec report are attached in Appendix 'B'.

This capacity analysis will serve to some extent a refinement of the tributary area discussed within the aforementioned Master Servicing Plan Report. In support of the analysis refer to the following Appendices:

- B1: Excerpts from Master Servicing Plan and Financial Implementation Report —Sanitary and Water Servicing prepared by Stantec Consulting Ltd. dated July 30, 2007:
 - Section 3.1 Sanitary Servicing Requirement
 - Figure 3 Sanitary Drainage Area Plan
 - Section 5.3.2 Preliminary Design, Reserve Capacity, and Opportunities for Upgrading
 - Sanitary Sewer Design Sheet
- B2: Pump Station Site Plan & Main Street Plan & Profile As Built drawings prepared by Stantec Consulting Ltd
- B3: Internal and External Sanitary Sewer Design Sheets prepared by Condeland Engineering Limited.

Master Servicing Plan Summary Brief

The Hamlet of Glen Williams is generally on private sewage systems. The Stantec report illustrates the preliminary tributaries assessment and the orientation of the sanitary sewer. The development included 308 residential units, a school property, and surrounding commercial properties. Refer to Appendix 'B1' and Table 1 (below) for a detailed breakdown. Specifically, this includes 158 residential units within Sheridan, Bayfield, and Rinaldi (Northwest) Development, 150 future residential connections, the existing Glen Williams Public School and surrounding commercial properties. Sufficient capacity within the existing Silver Creek trunk sanitary sewer has been confirmed.

7

Review and Assessment

An updated sanitary tributary plan (figure 1) and design sheet was prepared based on current information and is attached in Appendices D & B3 respectively. Included in the updated tributary plan is 338 residential units, the school and commercial properties. Consistent with the Master Servicing Plan Report, we have applied the same criteria to establish flow, namely 3.5 persons/unit with infiltration. Below is Table 1 which provides a summary comparing the updated sanitary drainage catchment area to the Master Servicing Plan Report, and our flow determination is 45.92 lps compared to 49.13 lps established previously.

The existing "Sheridan" Development has been completed with 89 lots, and is connected to the Glen Williams Pumping Station. We have included for your ease of reference As Built drawings of the Glen Williams Pumping Station and Main Street Plan & Profile, refer to Appendix 'B2'.

The "Bayfield" and "Rinaldi" Developments have not proceeded yet nor has the construction of the sanitary gravity drain to the pumping station. We are proposing to include the subject "Devins" Development, which consist of 32 residential units, as part of this system. Our flow determination for the residential developments is 20.79 lps compared to 24.00 lps established previous. We have maintained the flows allotted by the Master Servicing Plan Report for existing residential, school, and commercial properties of 25.13 lps.

TABLE 1: GLEN WILLIAMS EXISTING PUMP CAPACI	TY ANALY	'SIS						
	St	antec's MS	P (July 2	007)	Cond	eland's Up	date (Jun	e 2017)
	Units	Area (ha)	Pop	Flow (lps)	Units	Area (ha)	Pop	Flow (lps)
CONSTRUCTED SHERIDAN DEVELOPMENT	91.0	36.0	319.0	14.00	89.0	20.4	312.0	9.88
PROPOSED BAYFIELD DEVELOPMENT	35.0	12.0	123.0	5.00	34.0	8.0	119.0	3.89
PROPOSED RINALDI (NORTHWEST) DEVELOPMENT	32.0	11.0	112.0	5.00	33.0	6.9	116.0	3.54
NEWLY PROPOSED DEVINS DEVELOPMENT		NOT IN	CLUDED		32.0	6.9	112.0	3.48
SUB-TOTAL RESIDENTIAL DEVELOPMENTS	158.0	59.0	554.0	24.00	188.0	42.2	659.0	20.79
ALLOWANCE FOR EXISTING RESIDENTIAL UNITS	150.0	52.5	525.0	22.00	150.0	52.5	525.0	22.00
TOTAL RESIDENTIAL	308.0	111.5	1079.0	46.00	338.0	94.7	1184.0	42.79
EXISTING COMMERCIAL (90 persons / ha)		1.5	135.0	1.88		1.5	135.0	1.88
EXISTING SCHOOL (40 persons / ha)		1.5	60.0	1.25		1.5	60.0	1.25
TOTAL	308.0	114.5	1274.0	49.13	338.0	97.7	1379.0	45.92
GLEN WILLIAMS PUMP CAPACITY (LPS)				50.00				50.00
EXCESS (LPS)				0.87				4.08

The existing Glen Williams Pumping Station has a capacity of 50 litres per second. The developments of 188 residential lots of "Sheridan", "Bayfield", "Rinaldi", and "Devins" Subdivisions utilize 20.79 lps compared to 24.00 lps established in the 2007 Master Servicing Plan Report. While the remaining surplus capacity could be distributed to service existing/future school/commercial/residential properties as outlined in the Master Servicing Plan Report.

C.3. Treatment

Halton Region staff reported that the Georgetown Wastewater Treatment Plant (WWTP) has sufficient hydraulic capacity to accommodate the build out of the Georgetown urban area including the Hamlets of Norval, Stewarttown and Glen Williams.

D.O. WATER SUPPLY AND DISTRIBUTION

D.1. Water Supply

The subject development lies in an area that is serviced by an integrated water supply system that is fed by several ground water wells, specifically; the Cedervale Well field, the Princess Anne Well field, and the Lindsay Court Well. In addition, the Georgetown water Purification Plant (WPP) treats ground water pumped from the Cedervale well field.

Class EA projects and studies by the Region of Halton are on-going to investigate the feasibility of obtaining additional water supply for Georgetown and surrounding areas.

When additional water supply capacity is released by the Region the Town of Halton Hills will determine the allocation process.

As confirmed by the previous consultant for this development area, hydrant flow testing was conducted in June 2006 under the supervision of the Region of Halton. Static pressures of 38 psi were recorded at the hydrants located at the McMaster Street / Oak Ridge Drive and the Meagan Drive/McMaster Street intersections. The hydrants on Oak Ridge Drive are at an approximate elevation of 275 metres and with proposed grades for the subject development lots ranging from 0.50 to 2.50 metres lower, will serve to slightly increase the static pressure (0.7-3.5 psi) for the new lots. Further hydrant flow testing revealed a 4 psi drop in static pressure (residual pressure) at the Meagan Drive hydrant after opening the hydrant at McMaster Street, with a recorded flow of 88 U.S.GPM.

Although these measured pressures are slightly below the minimum Regional criteria of 40 psi they are typical for the area and therefore the proposed development will not adversely impact supply to the surrounding residential lands.

10

D.2. Water Distribution

Water servicing distribution for the subject development will be provided by the proposed installation of a 250mm diameter watermain along Street A. Refer to Figure 3, General Servicing Plan in Appendix 'D' for the proposed watermain alignment. As indicated on the plan the watermain will connect to existing 250mm diameter watermain stubs on both McMaster Street and Meagan Drive. In addition, a proposed interconnection to the existing 200mm/300mm diameter watermain on Eighth Line is shown from the subject lands via an existing 10 metre wide Regional servicing easement between existing residential properties. This interconnection will serve to improve fire flow pressures for the current development.

E.O. PROPOSED ROAD GRADE AND LOT GRADING DESIGN

E.1. Road Grade Design

Refer to Figure 4, Proposed Grading Plan enclosed in Appendix 'D' for the conceptual road and lot grading design for the subject development. As noted on the plan Street A is a "crescent" type road with grade connections to existing McMaster Street and Meagan Drive, along the subject land's north-east limit. The proposed road grade is designed to direct major storm overland flow from McMaster Street and Meagan Drive south-westerly to an overall low-point adjacent to the proposed Stormwater Management (SWM) Pond Block (Block 33). The Street A road connections to both McMaster Street and Meagan Drive will create a road high-point confirming that no external drainage from the existing municipal right-of-ways will be conveyed into the subject development. Due to downstream storm outlet constraints, we have elevated the proposed SWM Pond as much as possible and in doing so Street A has been designed with flatter grades (minimum of 0.50%) and requires "saw-backs" to ensure the overland flow route is maintained. "Saw-backs" refer to localized low-points designed to ensure minimum road grades are maintained for effective drainage while still providing major overland flow routing via cascading flows. It should also be noted that the proposed angle bends have been designed with centerline road grades of 1.0% or greater ensuring gutter longitudinal slopes on the outside radius of the bends are at a minimum of 0.70% for adequate drainage.

E.2. Lot Grading Design

As described in the preceding section and as illustrated on Figure 4 the road grades range from a minimum of 0.50% to a maximum of 1.0%. The road is somewhat elevated as compared with the perimeter of the development area where existing grades must be matched. Therefore the proposed

12

front lot grades are in general slightly higher than the rear lot grades. To accommodate this grading condition a split-lot drainage style is proposed for all of the residential lots. As indicated on the Proposed Grading Plan, Figure 4, the grade differential between the front and the rear is minimal which results in very common house styles. Back-splits and basement walkout styles will not likely be possible, unless forced by artificially raising the houses. As the majority of lots back onto existing surrounding properties rear yard drainage will have to be intercepted by rear lot swales and then captured by rear lot catchbasins to direct storm drainage to the proposed storm sewer system. The storm drainage design will be detailed in the next section of this report.

F.O. STORMWATER MANAGEMENT QUANTITY AND QUALITY CONTROL

F.1 Existing Conditions

Drainage from the subject lands is conveyed in four sub catchments as noted below, as discussed in Section B and illustrated in Figure 5, in Appendix 'D':

The Soil type in this area is "Oneida clay loam", which has a well draining characteristic as noted from the Halton County Soil Maps prepared by the Canadian Department of Agriculture.

F.2 Proposed Conditions

F.2.1 Quantity Control

Utilizing SWMHYMO 99 Version 4.02 program we have modeled the 2year, 5year, 25year, 50year, and the 100year SCS Storm events.

Below is the summary of the predevelopment flows for the various storm events in cubic meters per second.

Storm Event	300	301	302	303	303+304
2yr	0.12	0.023	0.11	0.19	0.30
5ųr	0.154	0.029	0.141	0.243	0.384
10yr	0.194	0.032	0.172	0.293	0.466
25yr	0.304	0.056	0.275	0.472	0.747
50yr	0.340	0.063	0.307	0.529	0.836
100yr	0.381	0.07	0.344	0.591	0.934

Subcatchment 300 represents the north area of the plan which includes .200 Ha of external flow from the existing subdivision, Sub area 301 represents 0.287 Ha located centrally in the plan and drains through two existing homes fronting the 8th line. Sub Area 302 and 303, which represents a substantial portion of the subject lands, some 2.892 Ha, drains also to the 8th line, following existing swales on either side of an existing home on the 8th line. Eventually flows from area 302 and 303 cross the 8th line via culvert then captured by a DICB into an existing 675mm storm sewer running parallel with the 8th line falling towards Wildwood Road. We have combined the flows from sub area 302 and 303 for the purposes of comparison with post development conditions. It is our proposal to maintain some of the current outlets in order to meet the existing grading conditions surrounding the site. Alternatively, if the municipality prefers the removal of the extraneous flows, rear lot catchbasins could be introduced and the drainage would be diverted to the Proposed Storm Water Management Pond.

Under Post development conditions we have subdivided the area into three sub catchments, area 600, rear yard drainage, will outlet at the same location as area 300; area 601, again rear yard drainage, will outlet at the same location as area 301; and area 602 which includes the balance of the plan, roads, driveways, homes and front yard drainage, and will discharge to the pond, will compare with the combined pre-development flows of Sub area 302 and 303.

Below is the summary of the post-development flows for the various storm events in cubic meters per second.

	600	601	602
2yr	0.023	0.017	0.446

5yr	0.030	0.022	0.534
10yr	0.022	0.026	0.532
25yr	0.058	0.045	0.92
50γr	0.065	0.050	1.008
100yr	0.073	0.056	1.155

In our preliminary analysis we have used the subroutine "Compute Volume" to provide a volume required during the 100 year storm. Based on the output file found in Appendix "C "the total storage required is 1,800 cubic meters. At elevation 273.50 the total active storage available in the SWM pond is 2,000 cubic meters. Details of the pond design and control structure will be provided at Detailed Engineering Design stage.

F.2.2 Quality Control

For Outlet 4, Water Quality control for the subject lands will be addressed by storage and extended storage within the proposed pond,

Storage and Extended Storage

Quality control will be based on Level 1 or Enhanced Protection in accordance with Table 3.2 of the Storm Water Management Planning and Design Manual, March 2003.

Table 3.0 Quality Control Analysis

Watershed Area (Hectares)	Enhanced Protection Volume (cum) (140cum/Ha)	Extended Detention Volume (cum) (40cum/Ha)	Storage required (cum)
5.496	769.44	Included in 140cum/ha	769.44

Based on the preliminary base Pond elevation of 267.35 the Permanent Storage provided is 850 cu.m.

To ensure 24 Hour drawn down time plus 10% freebaord we are proposing to use IPEX Inlet Control

For Sub catchment areas 600 and 601, given the soil types, infiltration trenches along the rear lot lines will be feasible.

G.O. PROPOSED EROSION CONTROL MEASURES

Device (ICD) within the proposed control structure.

Prior to the Building Construction Program, the installation of a silt control fence will be in place surrounding the disturbed area of the site with allowance for construction access. This will control the quality of runoff and localize the areas of intense erosion and sedimentation. The perimeter properties are to be protected via siltation control fence. Regular maintenance and all necessary repairs shall be performed including the safe disposal of all sediment material. Maintenance, which in most cases will require the removal of sediment and the installation of a new device, shall be conducted when the level of performance of the implemented control device is reduced to less than 40% of its initial capacity based on the Engineers observation.

H.O. CONCLUSIONS AND RECOMMENDATIONS

In summary, the existing municipal services are such that they can support the subject development.

On a basis of our investigation and examination, it is the conclusion of the writer that:

- The subject development can be drained for sanitary sewage purposes;
- The existing municipal water supply infrastructure is readily available to the subject development subject to Council allocation of capacity when it becomes available;
- Adequate storm drainage and storm water management facilities for both quantitative and qualitative can be provided within the subject development area to neutralize the impact of urbanized runoff.

Respectfully submitted by:

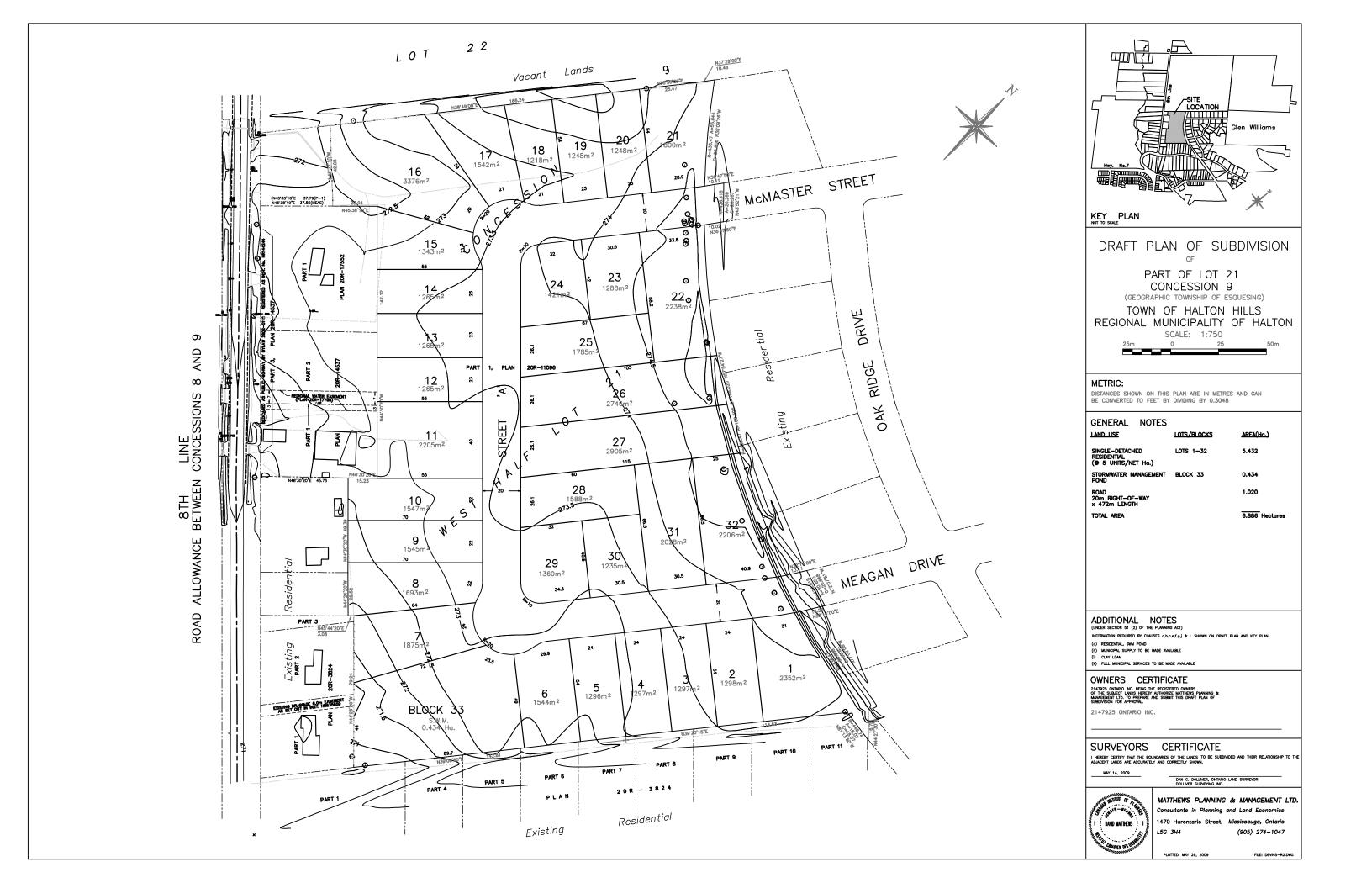
CONDELAND ENGINEERING LIMITED

Consulting Engineers, Planners, Project Managers

Robert DeAngelis, P. Eng,

Principal

Michael Hall, P. Eng,


NCE OF

Senior Engineer

APPENDIX 'A'

Draft Plan of Subdivision prepared by Matthews Planning & Management Ltd.

APPENDIX 'B'

Sanitary Servicing

- APPENDIX 'B1' Excerpts from Master Servicing Plan and Financial Implementation Report Sanitary and Water Servicing prepared by Stantec Consulting Ltd. dated July 30, 2007:
 - Section 3.1 Sanitary Servicing Requirement
 - Figure 3 Sanitary Drainage Area Plan
 - Section 5.3.2 Preliminary Design, Reserve Capacity, and Opportunities for Upgrading
 - Sanitary Sewer Design Sheet
- APPENDIX 'B2' Pump Station Site Plan & Main Street Plan & Profile As Built drawings prepared by Stantec Consulting Ltd.
- **APPENDIX 'B3'** Internal and External Sanitary Sewer Design Sheets prepared by Condeland Engineering Limited

APPENDIX 'B1'

Excerpts from Master Servicing Plan and Financial Implementation Report — Sanitary and Water Servicing prepared by Stantec Consulting Ltd. dated July 30, 2007:

- Section 3.1 Sanitary Servicing Requirement
- Figure 3 Sanitary Drainage Area Plan
- Section 5.3.2 Preliminary Design, Reserve Capacity, and Opportunities for Upgrading
- Sanitary Sewer Design Sheet

SHERIDAN, BAYFIELD AND NORTHWEST CONFEDERATION LANDS
HAMLET OF GLEN WILLIAMS, TOWN OF HALTON HILLS, REGION OF HALTON
MASTER SERVICING PLAN AND FINANCIAL IMPLEMENTATION REPORT
SANITARY AND WATER SERVICING

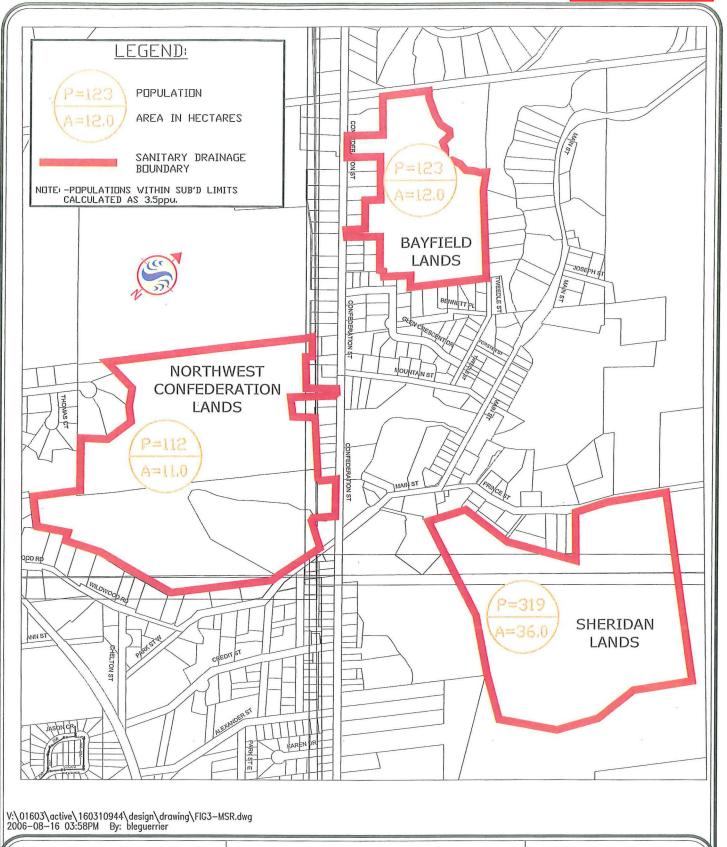
3.0 Proposed Servicing Requirements

3.1 SANITARY SERVICING REQUIREMENTS

As previously noted herein, the sanitary system is to be designed to accommodate all three proposed developments. Two different methods were used to obtain the theoretical peak design flow for the system.

The first method was based on the contributing residential area from all three developments of 60 ha and a population density of 55 persons/ha. However, based on the requirement of the Secondary Plan that limits the size of the individual lots to be no less that 0.25 acres, the density of 55 persons/ha is considered too high and not a representative figure. Therefore, the theoretical peak flow calculated using this method was not considered to be a good representation of the actual flows.

The second method for the calculation of the theoretical peak flow was based on the number of contributing dwelling units. Based on the anticipated Draft Plans for the three developments, a total of 158 units is expected. Using a population density of approximately 3.5 persons per unit, this method yielded a theoretical peak flow of 24 l/s.


Therefore, the latter method (based on the number of contributing units) was used to determine the theoretical peak design flow for the proposed sanitary sewer system. Detailed calculations are attached in Appendix D. The following Figure 3 provides the approximate contributing area and contributing population for each development.

The sanitary system was sized to accommodate approximately two times the theoretical peak flow of 24 l/s, or 50 l/s, providing a residual capacity of 25 l/s for future connections in the Hamlet. Refer to section 5.3.2 for a discussion on residual or additional capacity.

3.2 WATER SERVICING REQUIREMENTS

A watermain distribution analysis was completed for the proposed Sheridan, Bayfield and Northwest Confederation lands. The intent of the analysis is to determine the appropriate watermain sizes that will distribute domestic and fire flow water demand scenarios in accordance with Region of Halton (Region) and Ministry of the Environment (MOE) pressure and distribution criteria. Refer to Appendix E for supporting calculations and select correspondence.

In order to provide adequate water circulation and fire protection capacity, the Sheridan lands require a second feed, in addition to the existing watermain on Prince Street, and an internally looped watermain connection. Based on preliminary modeling, it is recommended that a looped connection also be provided for the Bayfield and Northwest Confederation lands, although it is not required to achieve minimum fire protection flows. The details of the connections can be

Stantec

Stantec Consulting Ltd. 49 FREDERICK STR., KITCHENER, ONTARIO N2H 6M7 TELEPHONE: (519) 579-4410

FAX: (519) 579-6733

GLEN WILLIAMS

MASTER SERVICING REPORT

SANITARY DRAINAGE AREA PLAN

FIGURE 3

DATE: AUGUST 2006
PROJECT: 1603-10944

SCALE:

N.T.S.

Stantec

Appendix B-1 iii)

SHERIDAN, BAYFIELD AND NORTHWEST CONFEDERATION LANDS
HAMLET OF GLEN WILLIAMS, TOWN OF HALTON HILLS, REGION OF HALTON
MASTER SERVICING PLAN AND FINANCIAL IMPLEMENTATION REPORT
SANITARY AND WATER SERVICING

Evaluation and Selection of Recommended Alternative July 30, 2007

- The depth to the existing groundwater elevation at the top of the slope ranges from 16 m to 18 m below ground surface, which is nearly equivalent to the height of the slope itself.
 Therefore, the proposed sewer pipe will be situated above the groundwater table from the top of the slope to nearly the toe of the slope
- Trenchless technology is the construction methodology being proposed to install the sewer/ watermain and therefore no granular pipe bedding materials are required. Oftentimes it is the granular bedding material that acts as a conduit for preferential groundwater movement; however, that will not be the case with the trenchless method
- The alignment of the proposed sewer/watermain is parallel to the interpreted groundwater flow direction and therefore the sewer/watermain will not intercept groundwater as it is already traveling in the same down gradient flow direction as the sewer/watermain

5.3 SELECTION OF RECOMMENDED ALTERNATIVE AND PRELIMINARY DESIGN

5.3.1 Sanitary Servicing

As a result of the evaluation and discussions with the key agencies, etc., Pumping Station Alternative 4C combined with Sanitary Sewer Alternative 2A for the Sheridan lands and Sanitary Sewer Alternative 2 for the Bayfield lands are the recommended alternatives comprising the total servicing solution. The Northwest Confederation lands will connect into the pumping station directly via a sewer across the Credit River (in combination with proposed gravity sewers down Confederation Street for the Bayfield lands), as previously described in Section 4.1.2.2.

5.3.2 Preliminary Design, Reserve Capacity, and Opportunities for Upgrading

The calculated theoretical flow from the three proposed developments requires a pumping station to accommodate a flow of 24 l/s. However, the owners of the Sheridan property have indicated a willingness to provide a forcemain and to oversize the pumping station to provide approximately twice the required flow, or 50 l/s. The additional cost of the oversizing would be apportioned to the Sheridan lands only and not cost-shared between the three developers.

The proposed residual capacity could be allocated to service the school located on Prince Street, the existing commercial businesses (up to a total area of 1.5 ha) and approximately 150 additional homes or single detached equivalent units (SDEs). The supporting sanitary calculations are attached as Appendix D.

A preliminary design of the proposed sewage pumping station and forcemain was completed and a memo indicating the details of this design is attached as Appendix H. Both the pumping station and the forcemain were designed to accommodate a peak flow of 50 l/s. The pumping station would consist of a 3000 mm diameter wet well at a depth of approximately 10 m, along with two fixed speed submersible style wastewater pumps. A separate control building

Stantec

SHERIDAN, BAYFIELD AND NORTHWEST CONFEDERATION LANDS
HAMLET OF GLEN WILLIAMS, TOWN OF HALTON HILLS, REGION OF HALTON
MASTER SERVICING PLAN AND FINANCIAL IMPLEMENTATION REPORT
SANITARY AND WATER SERVICING

Evaluation and Selection of Recommended Alternative July 30, 2007

(approximately 35 m²) will house the pump controls, generator, odor control system and other services. The station would require a 600V, three phase service, and would include an alarm and standby power generator with an automatic transfer switch. The station would be equipped with a bypass connection to allow for the connection of a portable pump in the event of an emergency or during major modifications. In the event of a complete failure of the station, an emergency gravity overflow will be installed.

A 200 mm diameter forcemain is required to accommodate the proposed flows.

A preliminary design of the recommended alternative has been completed including a site plan of the proposed pumping station and a profile that includes the proposed overflow for the pumping station. Please refer to Appendix G for an illustration of both the site plan and the profile.

During the design of the overflow at the pumping station, it was determined that since some of the basements of the existing homes on the west side of the river are at elevations lower than the river, there is not an overflow that would protect these basements in the case of a flood. Therefore, either backflow prevention valves would need to be provided, or sanitary services that provide for main floor levels only could be provided. If a service that accommodates main floor levels only is provided, the existing sanitary sewers on Mullen Place cannot be used, as the sewer system will not be low enough to accommodate them.

5.3.3 Water Servicing

There is an existing watermain system within the Hamlet; therefore, it is recommended that the Bayfield and Northwest Confederation lands connect into the existing system as discussed in Section 3.2 of this study.

The recommended route for the second watermain connection into the Sheridan lands is via the existing slope. This alternative coincides with the recommended alternative for the gravity sanitary sewer. Installing both the watermain and gravity sewer via the slope minimizes the impacts to the existing residents on Prince Street during construction and provides for an efficient design and construction procedure.

SUBDIVISION

DATE:

Glen Williams - Proposed Allocation of Residual Capacity

July 25, 2006

SANITARY SEWER

DESIGN SHEET

Region of Halton ~

AVERAGE DAILY FLOW RESIDENTIAL: PER PERSON = 275 l/p/day COMMERCIAL:

0.00028646 cums/Ha

0.000003183 cums/Ha

MINIMUM VELOCITY =

0.600 m/s 0.013

INDUSTRIAL: 0.00039786 cums/Ha INSTITUTIONAL: 0.0004 cums/Ha

4.500	INFILTRATION:	0.000286
1.500	RESIDENTIAL HARMON PEAKING	FACTOR

	ante	C DE	OATE: DESIGNED CHECKED I		J	25, 2006 JMK				A: 71.04. a. 4.0	* Lawrence way 22	2 9 32 200				n = MAX PEAK MIN PEAK	FAC.=		0.013 4.500 1.500		INSTITUTIO INFILTRATI RESIDENTIA	ION:	ON PEAKII	0.000286 NG FACTOR			
	LOCATION	N			RE'	SIDENTIAL ARE	A AND PC)PULATIO	N.		t CC	OMM	INF	DUST	IN'	NSTIT	C+I+I	V	INFILTRATIO	NC NC	TOTAL			PIE	Æ.		
STREET	FR	ROM	то	AREA	POP.	EQUIV. POP.	CUMU	JLATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	ARÈA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	DIST	DIA	SLOPE	CAP.	VE	EL.
	М.	.Н.	м.н.		DENSITY		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW		- 2			(FULL)	(FULL)	(ACT.)
				(ha)	(p/ha)		(ha)	X		(m3/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(m3/s)	(ha)	(ha)	(m3/s)	(m3/s)	(m)	(mm)	(%)	(m3/s)	(m/s)	(m/s)
School Site																											
Start of Run			J	1		/	1			/	1				'	1	0.000	0.00	0.00	0.000		1					
Middle of run	7 2	2	1	1.50	40	60	1.50	60	4.298	0.00082	1				,	1	0.000	1.50	1.50	0.000429	0.00125	100.00	200	0.5	0.023	0.73	0.34
End of Run	1	L				4									'		0.000	0.00	1.50	0.000							
Light Commerc	cial																										
Start of Run			J	i			1			/	1				/	1	0.000	0.00	0.00	,		1					
Middle of run	, 3	3	1	1.50	90	135	1.50	135	3.365	0.00145	1				'	1	0.000	1.50	1.50	0.000429	0.00188	100.00	200	0.5	0.023	0.73	0.42
End of Run	1	i		í			1				1						0.000	0.00	1.50	0.000							
Residential				1																							
Start of Run			J			,	1			1	1					1	0.000	0.00	0.00	,	1	1					
Middle of run	1 4	į.	1	52.50	10	525	52.50	525	3.963	0.007	4				,	1	0.000	52.50	52.50	0.015	0.022	100.00	200	0.5	0.023	0.73	0.84
End of Run	1	i				/									/		0.000	0.00	52.50	0.015							

SUBDIVISION Sheridan, Pilutti and Bayfield Lands

April 18, 2006

PQ

0

SANITARY SEWER DESIGN SHEET

DESIGN PARAMETERS Region of Halton ~

AVERAGE DAILY FLOW PER PERSON =

RESIDENTIAL: COMMERCIAL: 0.000003183 cums/Ha 0.00028646 cums/Ha

MINIMUM VELOCITY =

0.000

0.00

59.00

0.017

MAX PEAK FAC.=

0.600 m/s 0.013

4.500

275 l/p/day

INDUSTRIAL: INSTITUTIONAL: INFILTRATION:

0.00039786 cums/Ha 0 cums/Ha

0.000286 cums/Ha

Stall	RCL									MIN PEAK FAC.=					RESIDENTI	RESIDENTIAL HARMON PEAKING FACTOR										
LOC	ATION	CHECKED		RE	SIDENTIAL ARE	A AND PO	PULATIO	N .		CC	MMC	IND	DUST	in in	STIT	C+I+I	11	VILTRATIO	N	TOTAL			t Pl	PE	14	
STREET	FROM M.H.	TO M.H.	AREA (ha)	POP. DENSITY (p/ha)	POP.*	The state of the s	ATIVE POP	PEAK FACT.	PEAK FLOW (m3/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (m3/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT: FLOW (m3/s)	FLOW (m3/s)	DIST (m)	DIA (mm)	SLOPE (%)	CAP. (FULL) (m3/s)	VE (FULL) (m/s)	EL. (ACT.) (m/s)
Sheridan							2.1																			
Start of Run					0		91									0.000	0.00	0.00								
Middle of run	2	1	36.00		319	36.00	319	4.067	0.004							0.000	36.00	36.00	0.010	0.014	100.00	200	0.5	0.023	0.73	0.77
End of Run	1	V			0											0.000	0.00	36.00	0.010							
Bayfield							115	+							1											
Start of Run					0		BS W	- 1								0.000	0.00	0.00		1	1					
Middle of run	3	1	12.00		123	12.00	123	4.218	0.002							0.000	12.00	12.00	0.003	0.005	100.00	200	0.5	0.023	0.73	0.55
End of Run	1				0											0.000	0.00	12.00	0.000							
Pilutti							20	-																		
Start of Run					0	1 (32)									0.000	0.00	0.00								
Middle of run	4	1	11.00		112	11.00	112	4.230	0.002							0.000	11.00	11.00	0.003	0.005	100.00	200	0.5	0.023	0.73	0.55
End of Run	1				0											0.000	0.00	11.00	0.000							
PS																										
Start of Run					0	1									1	0.000	0.00	0.00								
Middle of run	1	PS	0.00	. 0	554	59.00	554	3.951	0.007							0.000	0.00	59.00	0.017	0.024	100.00	250	0.5	0.042	0.85	0.88

Note:

End of Run

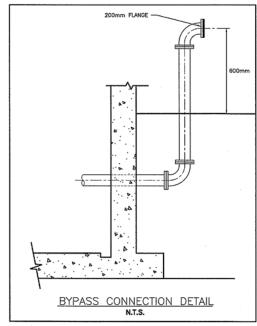
Population based on 3.5 persons per unit

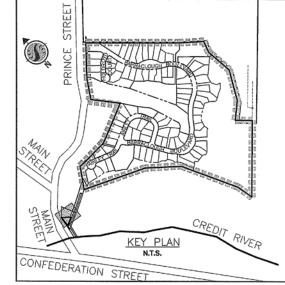
PS

DATE:

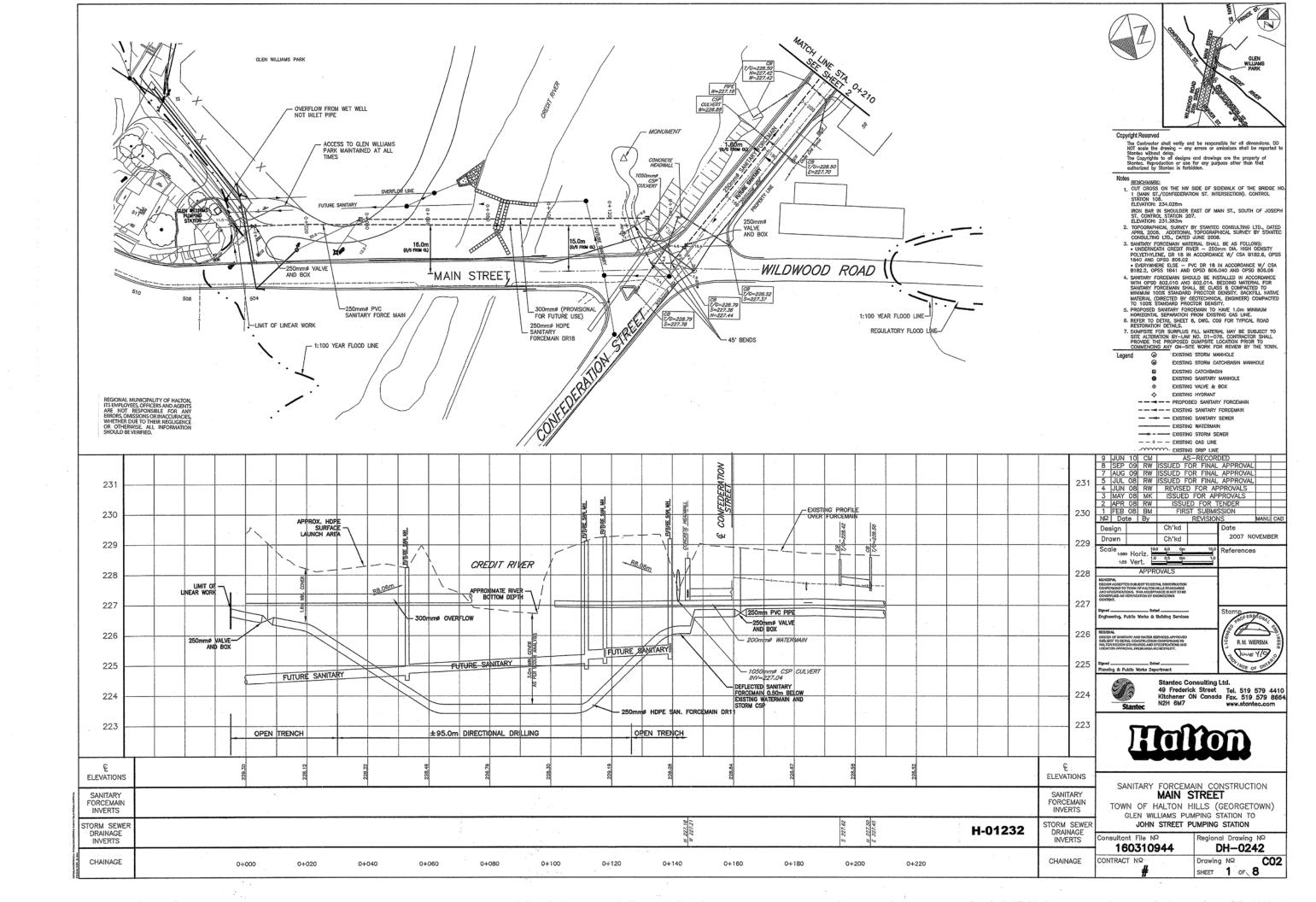
Chamber DESIGNED BY:

APPENDIX 'B2'


Pump Station Site Plan & Main Street Plan & Profile As Built drawings prepared by Stantec Consulting Ltd.


 \times οę

×


PR-XXXX-XX

FINISHED GRADE SANITARY FORCEMAIN BEDDING DETAIL N.T.S.

H-01231

APPENDIX 'B3'

Internal and External Sanitary Sewer Design Sheets prepared by Condeland Engineering Limited

STREET	FROM MH #	TO MH #	NO. OF UNITS	SECTION AREA (ha)	ACCUMULATED AREA (ha)	POPULATION	ACCUMULATED POPULATION	PEAKING FACTOR	PEAK DAY FLOW = (8)(0.003183)(9) (L/s)	INFILTRATION (L/s)	TOTAL FLOW = (10) + (11) (L/s)	PIPE DIAMETER (mm)	TYPE OF PIPE	PIPE LENGTH (m)	SLOPE (%)	FULL FLOW CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	ACTUAL FLOW VELOCITY (m/s)	UPPER END INVERT (m)	UPPER END MH LOSSES (m)	LOWER END INVERT (m)	REMARKS %FULL
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)
																						-
						l	1		21	47925 ONTA	RIO INC.			l		1	l	1			L.	
STREET "A"	MH15A	MH14A	7	1.241	1.241	25	25	4.37	0.341	0.35	0.696	250	PVC	90.00	1.00%	59.41	1.21		271.900		271.000	1.2%
STREET "A"	MH14A	MH13A	2	0.553	1.794	7	32	4.35	0.436	0.51	0.949	250	PVC	15.14	1.00%	59.41	1.21		270.970	0.03	270.819	1.6%
STREET "A"	MH13A	MH12A	6	1.150	2.944	21	53	4.31	0.720	0.84	1.562	250	PVC	90.00	1.00%	59.41	1.21		270.789	0.03	269.889	2.6%
STREET "A" STREET "A"	MH12A MH11A	MH11A MH10A	6	1.328 0.239	4.272 4.511	21 4	74 77	4.28 4.27	1.001 1.047	1.22 1.29	2.223 2.337	250 250	PVC PVC	90.00 16.74	1.00% 1.00%	59.41 59.41	1.21 1.21		269.859 268.929	0.03 0.03	268.959 268.761	3.7% 3.9%
STREET "A"	MH10A	MH09A	4	0.239	5.179	14	91	4.27	1.232	1.48	2.714	250	PVC	44.40	1.00%	59.41	1.21		268.731	0.03	268.287	4.6%
STREET "A"	MH09A	MH08A	6	1.235	6.414	21	112	4.23	1.508	1.83	3.342	250	PVC	90.00	1.00%	59.41	1.21		268.257	0.03	267.357	5.6%
										MEAGAN D	RIVE											
MEAGAN DRIVE	MH08A/MH110A	MH109A	0	0.000	6.414	0	112	4.23	1.508	1.83	3.342	250	PVC	77.76	1.00%	59.41	1.21		267.332	0.025	266.555	5.6%
NOTES:																REGI	ON MUNIC	CIPALITY O	F HALTON			
POPULATION DENSITY (Sin DESIGN FLOW = 3.183x 10' PEAKING FACTOR = 1 + 14 WHERE P = POP. IN 1000's WET WEATHER INFILTRAT	-3 L/sec per person en /(4+P ^(1/2))				s per unit				Designed by: Checked by: Date:	S.N. M.E.H. 06-Sep-17						S	WORKS ANITARY SE	RING AND PU DEPARTMEN WER DESIGN EET 1 OF 1	NT			

STREET	TRIB. AREA ID	NO. OF UNITS	SECTION AREA (ha)	ACCUMULATED AREA (ha)	POPULATION	ACCUMULATED POPULATION	PEAKING FACTOR	PEAK DAY FLOW = (8)(0.003183)(9) (L/s)	INFILTRATION (L/s)	TOTAL FLOW = (10) + (11) (L/s)					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)					
							CONSTR	UCTED SHER	IDAN DEVE	LOPMENT					
BARRACLOUGH BLVD.	A1	89	20.42	20.42	312	312	4.07	4.043	5.84	9.883					
							PROPO	OSED BAYFIE	LD DEVELO	PMENT					
CONFEDERATION ST.	A2	34	8.01	8.01	119	119	4.22	1.599	2.29	3.890					
								111517165		EVEL ABIJELIE					
			T	1	1					EVELOPMENT				1 1	
CONFEDERATION ST.	A3	33	6.92	6.92	116	116	4.23	1.560	1.98	3.539					
			<u> </u>				NEWLY P	ROPOSED D	EVINS DEVE	LOPMENT					
MEAGAN DR.	A4	32	6.89	6.89	112	112	4.23	1.508	1.97	3.478				T I	
NOTES: POPULATION DENSITY (Single (Commercial = 90 persons/ha, Ir	nstitutional = 40 pe	rsons/ha	•									ENG W	IUNICIPALITY OF HA INEERING AND PUBLIC ORKS DEPARTMENT		
DESIGN FLOW = 3.183x 10^3		quivalent to 27	5 L per day per	person				Designed by:	S.N.		DEVE	LOPMENTS	- SANITARY SEWER DES	SIGN SHEET	
PEAKING FACTOR = 1 + 14/(4	+P'''²')							Checked by:	M.E.H.						
WHERE P = POP. IN 1000'S WET WEATHER INFILTRATION	N	0.286 L/s/ha						Date:	16-Jun-17				SHEET 1 OF 1		

APPENDIX 'C'

Stormwater Management

- Summary Output files of SWMHYMO modeling
- Pre-development 2 year, 5 year, 25 year, 50 year, 100 year
- Post-development 2 year, 5 year, 25 year, 50 year, 100 year

```
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  | ROUTE PIPE culver|
| IN= 1--> OUT= 8 |
| DT= 5.0 min |
                                                                                                                                                                                                                                                                                                                                 PIPE Number = 1.00
Diameter (mm) = 450.00
Length (m) = 45.00
Slope (m/m) = .01100
Manning n = .025
                                                                                                                                                                                                                                               00144>
00145>
00146>
00147>
00148>
00150>
00151>
00152>
00153>
00155>
00155>
00156>
00157>
00158>
                    TRAV.TIME min 2.89 1.85 1.44 1.21 1.06 .96 .89 .83 .78
  00016>
00017>
00018>
00019>
00020>
                                                                                                                                                                                                                                                                                     (m)
.024
.047
.071
.095
.118
.142
.166
                                                                                                                                                                                                                                                                                                           (cu.m.)

144E+00

402E+00

725E+00

110E+01

150E+01

1239E+01

239E+01

334E+01

334E+01

429E+01

476E+01

522E+01

606E+01

606E+01

701E+01

716E+01
                     +++++++ Licensed user: Condeland Engineering Limited +++++++
+++++++ Toronto SERIAL#:4377549 +++++++
                                                                                                                                                                                                                                               00169>
00160>
00161>
00162>
00163>
00164>
00165>
  00026>
00027>
                    ++++++ PROGRAM ARRAY DIMENSIONS +++++

Maximum value for ID numbers : 10

Hax. number of rainfall points: 15000

Max. number of flow points : 15000
  00031>
                                                                                                                                                                                                                                                00167>
00168>
00169>
00170>
00171>
                     00171>
00172>
00173>
00174>
00175>
00176>
                                                                                                                                                                                                                                                                                                                                                                   ---- hydrograph ---->
QPEAK TPEAK R.V.
(cms) (hrs) (mm)
.123 10.67 17.611
.120 10.67 17.611
                    Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PREZYR.dat
Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PREZYR.dat
Summary filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PREZYR.out
User comments:
1:
                                                                                                                                                                                                                                                                          INFLOW: ID= 1:300
OUTFLOW: ID= 8:culver
                                                                                                                                                                                                                                                001775
00178>
00179>
00180>
00181>
                                                                                                                                                                                                                                                               00045> * 2:
00046> * 3:
00185>
00186>
00187>
                                                                                                                                                                                                                                                                              Unit Hyd Qpeak (cms)= .174
                                                                                                                                                                                                                                              PEAK FLOW (cms)= .023 (i)
TIME TO PEAK (hrs)= 10.667
RUNOFF VOLUME (mm)= 17.611
TOTAL RAINFALL (mm)= 43.873
RUNOFF COEFFICIENT = .401
                                                                                                                                                                                                                                                00188>
  00071>
00072>
00073>
00074>
00075>
00076>
00077>
00078>
00079>
00080>
00081>
                                                                                                   New rainfall entered directly by user.
TIME STEP= 5.00 min  # of STEPS= 200
DURATION =16.67 hrs TOTAL RAIN= 43.87 mm
                                                                       RAIN I
                                                                                                   TIME
                                                                                                                        RAIN I
                                                                                                                                                                    RAIN I
                                                                                                                                                                                                                RAIN
                                                  00083>
00084>
00085>
00086>
00087>
                                                                                                   4.67
4.75
4.83
4.92
5.00
5.08
                                                                                                                                            8.92
9.00
9.08
9.17
9.25
9.33
9.42
9.50
9.57
9.83
9.92
10.00
10.08
10.17
                                                                                                                                                                                                                                                00222>
00223>
00224>
00225>
00226>
00227>
00228>
00229>
00230>
00231>
00232>
   00088>
                                                                                                                                                                                                                                                                              Unit Hyd Qpeak (cms) = 1.013
  00089>
00090>
00091>
00092>
00093>
                                                                                                                                                                                                                                                                             PEAK FLOW (CMS) = 1.90 (1)
TIME TO PEAK (hrs) = 10.667
RUNOFF VOLUME (mm) = 17.611
TOTAL RAINFALL (mm) = 43.873
RUNOFF COEFFICIENT = .401
                                                                                                                     3.050
3.050
3.050
3.050
3.050
3.050
4.060
4.060
  00093>
00094>
00095>
00096>
00097>
                                                                                                   5.67
5.75
5.83
5.92
6.00
                                                                                                                                                                 1.520
1.520
1.520
1.520
1.020
1.020
                                                                                                                                                                                                                                                                              (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                                                                               *** WARNING: Time step is too large for value of TP.
R.V. may be ok. Peak flow could be off.
                                                                                                   6.00
6.08
6.17
6.25
6.33
6.42
6.50
  00100>
00101>
00102>
00103>
00104>
                                                                                                                 5.840
5.840
13.210
28.960
28.960
60.450
10.670
10.670
6.600
4.830
4.830
4.570
                                                                                                                                                                                                                                              28.960 | 10.58
28.960 | 10.67
60.450 | 10.67
60.450 | 10.83
10.670 | 10.83
10.670 | 11.92
10.670 | 11.92
10.670 | 11.92
10.670 | 11.92
10.670 | 11.92
10.670 | 11.92
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670 | 11.58
10.670
                                                                                                                                                                                                                                                                                                                                                                                  (cms) (hrs) (mm)
.110 10.67 17.61
.190 10.67 17.61
                                                                                                                                                                                                                  00106>
00107>
00108>
00109>
00110>
00111>
00112>
00113>
00114>
00115>
00116>
00117>
                                                                                                  6.58
6.67
6.75
6.83
6.92
7.00
7.17
7.25
7.33
7.50
7.58
7.67
7.83
7.92
8.08
8.17
8.23
                                                                                                                                                                   1.020
                                                                                                                                                                                                                                               00241>
00242>
00243>
00244>
00245>
00246>
00246>
00247-
00249>
00249>
00249>
00250>
FINISH
00251>
                                                                                                                                                                  1.020
1.020
1.020
1.020
                                                                                                                                                                                                                                                                                                        SUM 10:outlet 4.62
                                                                                                                                                                                                                                                                                                                                                                                    .300 10.67 17.61
                                                                                                                                                                                                                                                                    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                                                                                                  1.020
                                                        3.00
3.08
3.17
3.25
3.33
3.42
3.50
3.58
3.67
3.75
3.83
3.92
4.00
4.08
4.17
                                                                                                                                                                                                                                              warnings / errors / notes
                                                                                                                                                                                         15.83
15.92
16.00
16.08
16.17
16.25
16.33
16.42
16.50
16.58
                                                                    1.020 |
1.520 |
1.520 |
1.520 |
1.520 |
1.520 |
1.520 |
1.520 |
1.520 |
1.520 |
  00118>
00119>
00120>
00121>
00122>
                                                                                                                                                                 1.020 |
1.020 |
1.020 |
1.020 |
1.020 |
1.020 |
1.020 |
1.020 |
1.020 |
  00123>
00124>
00125>
00126>
00127>
  00129>
00130>
00131>
00132>
00133>
                                 Unit Hyd Qpeak (cms)=
                                                                                                    .623
                                00134>
00135>
```

```
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                     *** WARNING: Time step is too large for value of TP.
R.V. may be ok. Peak flow could be off.
                                                                                                                                                                                                                                                                                            0000075
                                                                                                                                                                                                                                                                                                                                                                                               PIPE Number = 1.00
Diameter (mm) = 450.00
Length (m) = 45.00
Slope (m/m) = .01100
Manning n = .025
                       00013>
00014>
00015>
00016>
00017>
00018>
00019>
                                                                                                                                                                                                                                                                                                                                   *** WARNING: MINIMUM PIPE SIZE REQUIRED = 453.09 (mm)
THIS SIZE WAS USED IN THE ROUTING.
THE CAPACITY OF THIS PIPE = .16 (cms)
                                                                                                                                                                                                                                                                                                                                 TRAV.TIME
                        +---++ Licensed user: Condeland Engineering Limited +----+
Toronto SERIAL#:4377549 +----
                                                                                                                                                                                                                                                                                                                                                                                                                                                          .623
.709
.784
.851
                                                                                                                                                                                                                                                                                            00161>
00162>
00163>
00164>
00165>
00166>
00167>
00170>
00171>
00172>
00173>
00174>
00175>
00176>
                                                                                                                                                                                                                                                                                                                                                                      .152E+01
.197E+01
.243E+01
.290E+01
.338E+01
.387E+01
.435E+01
.483E+01
.529E+01
                        ++++++ PROGRAM ARRAY DIMENSIONS +++++

Maximum value for ID numbers : 10 

Max. number of rainfall points: 15000 

Max. number of flow points : 15000
 00031>
00032>
00033>
00034>
00035>
00036>
00037>
00038>
00038>
00040>
00041>
                                                                                                                                                                                                                                                                                                                                                                                                                                                     .960
1.004
1.041
1.071
1.095
1.111
1.120
1.119
1.107
1.078
                                                                                                                                                                                                                                                                                                                                                                                                                 .101
.115
.129
.142
.153
.162
.168
.170
                         DATE: 2009-05-27 TIME: 19:02:13 RUN COUNTER: 000035
                                                                                                                                                                                                                                                                                                                                                                       .614E+01
                         Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRESTR.dut
Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRESTR.out
Summary filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRESTR.out
User comments:
1:
                                                                                                                                                                                                                                                                                                                                                                                                                                        AREA (
                                                                                                                                                                                                                                                                                                                             INFLOW: ID= 1:300
OUTFLOW: ID= 8:culver
                        * 3:
                                                                                                                                                                                                                                                                                             00183>
00184>
00185>
00186>
00187>
00188>
Unit Hyd Qpeak (cms)= .174
PEAK FLOW (cms)= .029 (1)
TIME TO PEAK (hrs)= 10.667
RUNOFF VOLUME (mm)= 23.192
TOTAL RAINFALL (mm)= 52.035
RUNOFF COEFFICIENT = .446
                                                                                                                                                                                                                                                                                             00194>
00195>
00196>
00197>
00198>
00199>
                                                                                                                                                                                                                                                                                        New rainfall entered directly by user.

TIME STEP= 5.00 min  # of STEPS= 200

DURATION =16.67 hrs TOTAL RAIN= 52.03 mm
 00075>
00076>
00077>
00078>
00079>
00080>
                                                                                       RAIN |
                                                                                                                                              RATN I
                                                                                                                                                                          TIME
                                                                                                                                                                                                   RATN I
                                                                                                                                                                                                                                                       RATN
                                                                                                                                      mm/hz | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 | 1.780 
                                                                                                                                                                                                                                                    nm/hr
1.020
1.020
1.020
1.020
1.020
1.020
1.020
1.020
1.020
  00082
                                                                                                                                                                                                                                                                                             (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                            13.00
13.08
13.17
13.25
13.33
13.42
13.50
13.58
13.67
13.75
13.83
13.92
   00088
                                                                                                                                                                                                                                                                                             00090>
00091>
00092>
                                                                                                                                                                      9.42
9.50
9.58
9.67
9.75
9.83
9.92
10.00
10.08
10.17
10.25
10.30
10.50
10.50
10.50
10.67
10.75
10.83
10.92
11.00
                                                                                                                                                                                                 1.780
  00093>
00094>
                                                                                                                                                                                                                                                                                             00228>
00229>
00230>
00231>
00232>
00233>
00234>
                                                                                                                                                                                                                                                                                                                                  Unit Hyd Qpeak (cms) = 1.013
                                                                                                                                                                                                                            14.00
14.08
14.17
14.25
14.33
14.42
14.58
14.58
14.67
14.75
14.83
14.92
                                                                                                                                                                                                                                                                                                                                PEAK FLOW (cms)= 243 (i)
TIME TO PEAK (hrs)= 10.667
RUNOFF VOLUME (mm)= 23.192
TOTAL RAINFALL (mm)= 52.035
RUNOFF COEFFICIENT = .446
                                                                                                                     6.00
6.08
6.17
6.25
6.33
6.42
6.50
   00100>
                                                                  1.92
2.00
2.08
2.17
2.25
2.33
2.42
2.50
2.58
2.67
2.75
2.83
                                                                                                                                                                                                                                                                                                                                  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                                                                                               00106>
00107>
00108>
00109>
00110>
                                                                                                                     6.58
6.67
6.73
6.92
7.008
7.17
7.25
7.32
7.50
7.567
7.75
7.83
7.90
8.08
8.12
8.25
8.33
                                                                                                                                                                                                                                                                                             15.08
15.17
15.25
15.33
15.42
15.58
15.67
15.78
15.83
15.92
16.00
16.08
16.17
16.25
16.33
16.42
16.50
16.50
                                                                  2.92
3.00
3.08
3.17
3.25
3.33
3.42
3.50
3.58
3.67
3.75
3.83
3.92
                                                                                                                                                                                                1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
1.270 |
                                                                                                                                                                                                                                                                                                                       NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                      1.270
1.270
1.780
1.780
1.780
1.780
1.780
1.780
1.780
                                                                                                                                                                                                                                                                                               00252>
                                                                                                                                         3.810 | 11.67

3.050 | 11.75

3.050 | 11.83

3.050 | 12.00

3.050 | 12.00

3.050 | 12.08

3.050 | 12.13

3.050 | 12.13

3.050 | 12.33

3.050 | 12.42

3.050 | 12.50
                                                                                                                                                                                                                                                                                              00118>
                                                                                                                                                                                                                                                                                             00259-
00259-
00269-
001:0002 DESIGN NASHYD
00261-
00262-
001:0003 ROUTE PIPE

"*WARNING: New pipe size used for value of TP.
00265-
00265-
00265-
00265-
00265-
00265-
00265-
00265-
00265-
00265-
00265-
00267-
00268-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00269-
00
  00128>
                                      Unit Hyd Qpeak (cms)=
                                                                                                                     . 623
                                     00134>
00135>
```

(U: '	$ackslash \dots PRE5YR.out)$	١
-------	------------------------------	---

Condeland Engineering Limited

00001> 00002- 00002- 00003> SSSSS W W M M H H H Y Y H M OOO 999 999 00004> S W W W MM M H H Y Y M M MM O 0 9 9 9 9 9 Ver. 4.02 00005> SSSSS W W M M H H H H H Y H M N O 0 #99 9 9 9 Ver. 4.02 00006> S W M M H H H Y M M O 0 999 9999 July 1999 00007> SSSS W W M M H H Y M M OOO 9 9 9	00136>
00017>	00151> 01:300 DT= 5.00 Ia (mm)= 1.500 # of Linear Res.(N)= 3.00 00152>
000315	001665 0010004
00046> * 3: 00047> 00048- 000490 000500 001;0001	Ooi81\ Ooi82\ Ooi82\ Ooi83\ Ooi82\ Ooi83\ Ooi82\ Ooi83\ Ooi82\ Ooi83\ Ooi83\ Ooi83\ Ooi83\ Ooi84\ Ooi85\ Ooi86\ Ooi8
Rainfall dir.: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\ 00061>	001955 .337
000745	002109 001:0005
0.0093>	00229b 001:0006
001115	002465 002475 002489 001:0070
00128>	00263> 00264> *** WARNING: Time step is too large for value of TP. 00265>

00271>	ID1 03:302 1.73 .172 10.00 58.85 .000	
00272>	+ID2 04:303 2.89 .293 10.00 58.85 .000	
00273>		
00274>	SUM 10:outlet 4.62 .466 10.00 58.85 .000	
00275>		
00276>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
00277>		
00278>		
00279>	001:0009	
00280>	FINISH	
00281>		
00282>	***************************************	
00283>	WARNINGS / ERRORS / NOTES	
00284>		
00285>	001:0003 DESIGN NASHYD	
00286>	*** WARNING: Time step is too large for value of TP.	
00287>	R.V. may be ok. Peak flow could be off.	
00288>	001:0004 ROUTE PIPE ->	
00289>	*** WARNING: New pipe size used for routing.	
00290>	001:0005 DESIGN NASHYD	
00291>	*** WARNING: Time step is too large for value of TP.	
00292>	R.V. may be ok. Peak flow could be off.	
00293>	001:0006 DESIGN NASHYD	
00294>	*** WARNING: Time step is too large for value of TP.	
00295>	R.V. may be ok. Peak flow could be off.	
00296>	001:0007 DESIGN NASHYD	
00297>	*** WARNING: Time step is too large for value of TP.	
00298>	R.V. may be ok. Peak flow could be off.	
00299>	Simulation ended on 2009-05-27 at 19:03:51	
00300>		
00301>		
00302>		

00001> =================================	00136>
00002>	00137> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
000045 S W W M MM MM H H H Y Y MM MM O 0 97999 9 9 9 000055 SSSS W W W H H H H H H H H H H H H H H	00139> *** WARNING: Time step is too large for value of TP. 00140> R.V. may be ok. Peak flow could be off.
000077 33333 WW N N N N N N N N N N N N N N N	00141>
00009> StormWater Management HYdrologic Model 999 999 =======	00143> 00144> ROUTE PIPE culver PIPE Number = 1.00
00010> 00011> *********************************	001445 ROUTE PIPE culver PIPE Number = 1.00
00013	00147> Slope (m/m)= .01100 00148>
00015> ******* OTTHYMO-83 and OTTHYMO-89. *******	00150> *** WARNING: MINIMUM PIPE SIZE REQUIRED = 582.00 (mm) 00151> THIS SIZE WAS USED IN THE ROUTING.
00017> ******* Distributed by: J.F. Sabourin and Associates Inc. *******	00152> THE CAPACITY OF THIS PIPE = .31 (cms)
00019> *******	00154> *** WARNING: New pipe size used for routing. 00155> < TRAVEL TIME TABLE>
00021> ************************************	00156> DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME 00157> (m) (cu.m.) (cms) (m/s) min
00023> +++++++ Licensed user: Condeland Engineering Limited +++++++	00158> .031 .241E+00 .002 .308 2.43 00159> .061 .672E+00 .007 .481 1.56
00024 ++++++ Licensed user: Condeland Engineering Limited ++++++ 00025 +++++++ Toronto +++++++ 00025 ++++++++++++++++++++++++++++++++++	00160> .092 .121E+01 .017 .619 1.21 00161> .123 .183E+01 .030 .736 1.02
00028> ****** ++++++ PROGRAM ARRAY DIMENSIONS ++++++	00162>
00030> Maximum value for ID numbers : 10	00165> .245 .479E+01 .114 1.074 .70 00166> .276 .558E+01 .141 1.134 .66
00032> ****** Max. number of flow points : 15000 *******	00167> .306 .639E+01 .168 1.186 .63 00168> .337 .718E+01 .196 1.230 .61
00034> 00035>	00169> .368 .797E+01 .224 1.266 .59 00170> .398 .873E+01 .251 1.294 .58
00036> ************************************	00171> .429 .946E+01 .276 1.313 .57 00172> .459 .101E+02 .298 1.323 .57
00038> * DATE: 2009-05-27 TIME: 19:11:36 RUN COUNTER: 000039 *	00173> .490 .108E+02 .316 1.322 .57 00174> .521 .113E+02 .328 1.308 .57
00040> * Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE25YR.dat * 00041> * Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE25YR.out * 00042> * Summary filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE25YR.sum *	00175> .551 .117E+02 .332 1.274 .59 00176> .582 .120E+02 .309 1.161 .65
00043> * User comments:	001775
00045> * 2:	00180
00047> ************************************	00182> 00183>
00049>	00184>
00051> # Project Name: [2147925 Ontario Limited] Project Number: [09-015]	00186> 00187> DESIGN NASHYD Area (ha)= .29 Curve Number (CN)=81.00
00053> *# Date : 05-20-2009 00054> *# Modeller : [ROBERT DE ANGELIS]	00188> 02:301 DT= 5.00 Ia (mm)= 1.500 # of Linear Res.(N)= 3.00 00189> U.H. Tp(hrs)= .063
00053> * Date : 05-20-2009 00054> * Modeler : 05-20-2009 00054> * Modeler : [ROBERT DE ANGELIS] 00055> * Company : Condeland Engineering Limited 00056> * License # : 4377549 00057> ************************************	00190> 00191> Unit Hyd Qpeak (cms)= .174
	00192> 00193> PEAK FLOW (cms) = 0.056 (i) 00194> TIME TO PEAK (hrs) = 10.667
000599 START Project dir.: u:\EXFILES\ENGINE-1\HYMO\Projects\09015\ 000610	00195> RUNGFF VOLUME (mm) = 44.586 00196> TOTAL RAINFALL (mm) = 79.949
00062> METOUT= 2 (output = METRIC) 00063> NRUN = 001	00197> RUNOFF COEFFICIENT = .558 00198>
00064> NSTORM= 0 00065>	00199> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00066> 001:0002	00201> *** WARNING: Time step is too large for value of TP. 00202> R.V. may be ok. Peak flow could be off.
00068> DESIGN NASHYD Area (ha)= 2.06 Curve Number (CN)=81.00	00203>
00071> New rainfall entered directly by user.	00205>
00073>	00208> U.H. Tp(hrs)= .115
00075> 00076> TIME RAIN! TIME RAIN! TIME RAIN! TIME RAIN	00210> Unit Hyd Qpeak (cms)= .575 00211>
00077> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 00078> .08 42.680 4.25 2.790 8.42 2.790 12.58 1.520	00212> PEAK FLOW (cms)= .275 (i) 00213> TIME TO PEAK (hrs)= 10.667
00079>	00214> RUNOFF VOLUME (mm) = 44.587 00215> TOTAL RAINFALL (mm) = 79.949
00081>	00216> RUNOFF COEFFICIENT = .558 00217> 00218> (i) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00084>	00219> 10220> *** WARNING: Time step is too large for value of TP.
00086>	00221> R.V. may be ok. Peak flow could be off.
00088>	00223> 001:0006
00090>	00225> DESIGN NASHYD Area (ha)= 2.89 Curve Number (CN)=81.00 00226> 04:303 DT= 5.00 Ia (mm)= 1.500 # of Linear Res.(N)= 3.00
00092>	0022/> 0.H. Tp(nrs)= .109
00094>	00229> Unit Hyd Qpeak (cms) = 1.013 00230> 00231> PEAK FLOW (cms) = .472 (i)
00096>	00231> PEAK FLOW (cm.s) = .472 (i) 00232> TIME TO PEAK (hr.s) = 10.667 00233> RUNOFF VOLUME (mm) = 44.587
00099>	00234> TOTAL RAINFALL (mm)= 79.949 00235> RUNOFF COEFFICIENT = .558
00101>	00236> 00237> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00103>	00238> 00239> *** WARNING: Time step is too large for value of TP.
00105>	00240> R.V. may be ok. Peak flow could be off.
00107>	00242> 001:0007
001109> 2.67 2.030 6.83 18.800 11.00 2.030 15.17 1.020 00110> 2.75 2.030 6.92 11.680 11.08 2.030 15.25 1.020 00111> 2.83 2.030 7.00 11.680 11.17 2.030 15.33 1.020	00244> ADD HYD (outlet) ID: NHYD AREA QPEAK TPEAK R.V. DWF 00245>
00112> 2.92 2.030 7.08 8.380 11.25 2.030 15.42 1.020 00113> 3.00 2.030 7.17 8.380 11.33 2.030 15.50 1.020	00247> +ID2 04:303
00114>	00249> SUM 10:outlet 4.62 .747 10.67 44.59 .000 00250>
00116>	00251> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00252>
00118> 3.42 2.790 [7.58 4.830 11.75 2.030 15.92 1.020	
00119> 3.50 2.790 1 7.67 4.830 11.83 2.030 16.00 1.020	00254> 001:0008
00119> 3.50 2.790 7.67 4.830 11.83 2.030 16.00 1.020 00120> 3.58 2.790 7.75 4.830 11.92 2.030 16.08 1.020 00121> 3.67 2.790 7.83 4.830 12.00 2.030 16.17 1.020	00255> FINISH
001195	00254> 001:0008
001199	00254> 001:0008
001195	00254> 001:0008
001199	00254> 001:0008
001199	00254> 001:0008
00119>	00254> 001:0008

```
00001> ======
                                                                                                                                                                                                                         00136>
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                                                     *** WARNING: Time step is too large for value of TP.
R.V. may be ok. Peak flow could be off.
                                                                                                                                                                                                                                            001:0003----
                                                                                                                                                                                                                                                                                                  PIPE Number = 1.00
Diameter (mm) = 455.00
Length (m) = 45.00
Slope (m/m) = .01100
Manning n = .025
                 A single event and continuous hydrologic simulation model

based on the principles of HTMO and its successors

OTTHYMO-83 and OTTHYMO-89.
                                                                                                                                                                                                                        00149>
00150>
00151>
00152>
00154>
00155>
00156>
00157>
00160>
00161>
00162>
00163>
00164>
00165>
00166>
00167>
00171>
                                                                                                                                                                                                                                                     *** WARNING: MINIMUM PIPE SIZE REQUIRED = 607.23 (mm)
THIS SIZE WAS USED IN THE ROUTING.
THE CAPACITY OF THIS PIPE = .35 (cms)
                 Distributed by: J.F. Sabourin and Associates Inc.
Ottawa, Ontario: (613) 727-5199
Gatineau, Quebec: (819) 243-6658
E-Mail: swmhymo@jfsa.Com
00017>
00018>
00019>
00020>
00021>
00022>
                                                                                                                                                                                                                                                    .263E+00
.731E+00
.132E+01
.200E+01
.274E+01
.353E+01
.436E+01
.521E+01
.608E+01
.782E+01
.867E+01
                   ++++++ Licensed user: Condeland Engineering Limited +++++
+++++ Toronto SERIAL#:4377549 +++++
                                                                                                                                                                                                                                                                                                                                           .954
1.034
1.105
1.167
1.220
1.265
1.302
                   ++++++ PROGRAM ARRAY DIMENSIONS +++++

Maximum value for ID numbers : 10  ---

Hax. number of rainfall points: 15000  ---

Max. number of flow points : 15000  ---
                                                                                                                                                                                                                                                                                                               .158
.189
.220
.251
.281
.309
.334
.354
.368
.372
 00034>
00035>
00036>
00037>
00038>
00039>
                                                                                                                                                                                                                                                                                .950E+01
.103E+02
.110E+02
.117E+02
.123E+02
                   * DATE: 2009-05-27 TIME: 19:27:05 RUN COUNTER: 000041
                  Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE50YR.dat
Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE50YR.dut
Summary filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE50YR.sum
User comments:
1:
2:
                                                                                                                                                                                                                                                                                                                                 00175>
00176>
00177>
00178>
00179>
00180>
                                                                                                                                                                                                                                                                                                               AREA
(ha)
2.06
2.06
INFLOW: ID= 1:300
OUTFLOW: ID= 8:culver
                                                                                                                                                                                                                         00183>
00184>
00185> 001:0004------
                                                                                                                                                                                                                                         Unit Hyd Qpeak (cms)= .174
                                                                                                                                                                                                                         00192>
00193>
00194>
00195>
00196>
00197>
00198>
00199>
00200>
00201>
00202>
00203>
                                                                                                                                                                                                                                                    PEAK FLOW (cms)= .063 (i)
TIME TO PEAK (hrs)= 10.667
RUNOFF VOLUME (mm)= 49.923
TOTAL RAINFALL (mm)= 86.441
RUNOFF COEFFICIENT = .578
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                         New rainfall entered directly by user.
TIME STEP= 5.00 min  # of STEPS= 200
DURATION =16.67 hrs TOTAL RAIN= 86.44 mm
                                                                                                                                                                                                                        00208>
00209>
00210>
00211>
00212>
00213>
00214>
 00074>
                                                                                                                                                                                                                                                     Unit Hyd Qpeak (cms)= .575
                                                TIME RAIN | hrs mm/hr | mm/hr 
 00075>
00076>
00077>
00078>
00079>
                                                                                                                                                                                                                                                    PEAK FLOW (cms)= 3.07 (i)
TIME TO PEAK (hrs)= 10.667
RUNOFF VOLUME (mm)= 49.923
TOTAL RAIRFALL (mm)= 86.441
RUNOFF COEFFICIENT = .578
                                                                                     mm/hr |
3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
                                                                                                                                                                                                                      00081>
00082>
00083>
00084>
00085>
                                                                                                                                 9.08
9.17
9.25
9.33
9.42
9.50
                                                                                                                                                  3.050
3.050
3.050
3.050
3.050
3.050
 00088>
00089>
00090>
 00091>
 00092>
00093>
00094>
00095>
00096>
                                                                                                                                 9.58
9.67
9.75
9.83
9.92
                                                                                                                                                                                                                        00227>
00228>
00229>
00231>
00232>
00233>
00234>
00235>
00236>
00237>
00238>
                                                                                                                                                                                                                                                     Unit Hyd Qpeak (cms)= 1.013
                                                                                                                                                                                                                                                    PEAK FLOW (cms)= 5.29 (i)
TIME TO PEAK (hrs)= 10.667
RUNOFF VOLUME (mm)= 49.923
TOTAL RAINFALL (mm)= 66.441
RUNOFF COEFFICIENT = 5.578
                                                                 2.120
                                                                                                                               10.00
10.08
10.17
10.25
10.33
10.42
10.50
10.58
10.67
10.75
11.08
11.17
11.25
11.33
11.42
                                                                                                                                                  3.050
                                                                                                                                                                       14.33
14.42
14.50
14.58
14.67
14.75
14.83
14.92
15.00
15.08
15.17
15.25
15.33
15.42
15.58
15.67
15.78
15.83
16.42
16.08
16.08
16.17
16.25
16.00
16.08
 00100>
00101>
00102>
00103>
                                                                                                                                                                                                                                                     (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                       00103>
00104>
00105>
00106>
00107>
00108>
                                                                                        6.75
6.83
6.92
7.00
7.08
7.17
                                                                                                                                                                                                                         00244> | ADD HYD (outlet) | ID: NHYD AREA
00245> ----- (ha)
                                                                                                                                                                                                                                                    SUM 10:outlet 4.62 .836 10.67 49.92
                                                                                       7.25
7.33
7.42
7.50
7.58
7.67
7.75
7.83
7.90
8.08
8.17
8.25
8.33
                                                                                                        8.680 | 11.50

8.680 | 11.50

6.100 | 11.50

6.100 | 11.50

5.170 | 11.75

5.170 | 11.75

5.170 | 12.00

5.170 | 12.00

5.170 | 12.00

5.170 | 12.25

5.170 | 12.25

5.170 | 12.25

5.170 | 12.35
                                                                                                                                                                                                                 .000
                                                 3.25
3.33
3.42
3.50
3.58
                                                                                                                                                2.120 |
2.120 |
2.120 |
2.120 |
2.120 |
2.120 |
2.120 |
2.120 |
2.120 |
                                                                3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
3.050 |
 00121>
00122>
00122>
00123>
00124>
00125>
 00125>
00126>
00127>
00128>
00129>
00130>
                                                  4.08
                                                                                          .623
                            Unit Hyd Qpeak (cms)=
                           PEAK FLOW (cms) = .346 (1)
TIME TO PEAK (hrs) = 10.667
RUNOFF VOLUME (mm) = 49.923
TOTAL RAINFALL (mm) = .578
```

(U:	PRE50YR.out)
-----	--------------

Condeland Engineering Limited

00271> 00272>	001:0006 DESIGN NASHYD *** WARNING: Time step is too large for value of TP.	
00273> 00274> 00275> :	001:0006 DESIGN MASHYD *** WARNING: Time step is too large for value of TP. R.V. may be ok. Peak flow could be off. Simulation ended on 2009-05-27 at 19:27:05	
00276> 00277>		

```
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                    | SSSS | W | W | M | H | H | Y | M | M | OOO | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 999 | 9
                                                                                                                                                                                                                                                                                     *** WARNING: Time step is too large for value of TP.
R.V. may be ok. Peak flow could be off.
                                                                                                                                                                                                                                                      PIPE Number = 1.00
Diameter (mm) = 45.0.00
Length (m) = 45.00
Slope (m/m) = .01100
Manning n = .025
                     00010>
                                                                                                                                                                                                                                                                                        *** WARNING: MINIMUM PIPE SIZE REQUIRED =
                                                                                                                                                                                                                                                                                                                                                                                                            633.24 (mm)
                                                                                                                                                                                                                                                       00151>
00152>
00153>
00153>
00155>
00156>
00157>
00159>
00161>
00162>
00163>
00164>
00165>
00166>
00167>
00169>
00170>
                                                                                                                                                                                                                                                                                          THIS SIZE WAS USED IN THE ROUTING.
THE CAPACITY OF THIS PIPE = .39 (cms)
                                                                                                                                                                                                                                                                                         00020>
00021>
00022>
00023>
00024>
00025>
                                                                                                                                                                                                                                                                                           DEPTH VOLUME
                                                                                                                                                                                                                                                                                                                                                                                                                       TRAV.TIME
                                                                                                                                                                                                                                                                                                                    VOLUME
(cu.m.)
.286E+00
.795E+00
.144E+01
.217E+01
.298E+01
.474E+01
.567E+01
.661E+01
.756E+01
                                                                                                                                                                                                                                                                                                                                                         (cms)
.002
.009
.021
                      .981
1.063
1.136
1.200
                      ++++++ PROGRAM ARRAY DIMENSIONS +++++

Maximum value for ID numbers : 10

Max. number of rainfall points: 15000

Max. number of flow points : 15000
                                                                                                                                                                                                                                                                                             . 233
. 267
. 300
. 333
                                                                                                                                                                                                                                                                                                                    .756E+01
.850E+01
.943E+01
.103E+02
.112E+02
.120E+02
                                                                                                                                                                                                                                                                                                                                                                                          1.301
1.339
1.369
1.389
1.399
                       DETAILED OUTPUT
                                                                                                                                                                                                                                                                                                                                                                           * DATE: 2009-05-27 TIME: 16:05:45 RUN COUNTER: 000030
                                                                                                                                                                                                                                                        00173>
00174>
00175>
00176>
00177>
00178>
00179>
00180>
00181>
00183>
                           Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE100YR.dat
Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE100YR.out
Summary filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\PRE100YR.sum
User comments:
                                                                                                                                                                                                                                                                                                                                                        AREA Q
  00043>
                                                                                                                                                                                                                                                                                   INFLOW: ID= 1:300
OUTFLOW: ID= 8:culver
                      * 3:_____-
  00048>
                   Unit Hyd Qpeak (cms) = .174
PEAK FLOW (cms) = .070 (i)
TIME TO PEAK (hrs) = 10.667 > .
RUNOFF VOLUME (rmn) = 55.821
TOTAL RAINFALL (rmn) = 93.480
RUNOFF COEFFICIENT = .597
                                                                                                                                                                                                                                                        00192>
00193>
00194>
00195>
00196>
00197>
00198>
00199>
00200>
00201>
                                                                                                                                                                                                                                                                                      (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                                                       New rainfall entered directly by user.
TIME STEP= 5.00 min # of STEPS= 200
DURATION =16.67 hrs TOTAL RAIN= 93.48 mm
                                                                                                                                                                                                                                                       00207>
00208>
00209>
00210>
00211>
00212>
00213>
00214>
00215>
00216>
00217>
00218>
  00073>
00074>
00075>
00076>
00077>
                                                                                                                                                                                                                                                                                       Unit Hyd Qpeak (cms)= .575
                                                                                                                                                                                                                  RAIN
mm/hr
1.780
1.780
1.780
1.780
1.780
                                                         TIME RAIN |
                                                           TIME RAIN
hrs mw/hr
.08 53.090
.17 2.290
.25 2.290
.33 2.290
.42 2.290
.50 2.290
.57 2.290
.75 2.290
.83 2.290
.83 2.290
.92 2.290
1.00 2.290
                                                                                                                          DATN I
                                                                                                                                                                                                                                                                                     PEAK FLOW (cms) = .344 (i)
TIME TO PEAK (hrs) = 10.667
RUNOFF VOLUME (mm) = 55.821
TOTAL RAINFALL (mm) = 93.480
RUNOFF COEFFICIENT = .597
                                                                                                                        RAIN
mm/hr
3.300
3.300
3.300
3.300
3.300
3.300
                                                                                                                                                   ### hrs 8.42 8.50 8.58 8.67 8.75 8.83
                                                                                                                                                                     RAIN
mm/hr
3.300
3.300
3.300
3.300
3.300
                                                                                                      hrs
4.25
4.33
4.42
4.50
4.58
4.67
4.75
4.83
4.92
5.00
5.08
5.17
  000779
00079>
00080>
00081>
00082>
                                                                                                                                                                                                                                                       (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00084>
00085>
00086>
00087>
00088>
                                                                                                                        3.300
3.300
3.300
3.300
6.100
6.100
                                                                                                                                                  8.92
9.00
9.08
9.17
9.25
9.33
                                                                                                                                                                     3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
3.300
                                                                                                                                                                                                                                                      6.100
6.100
6.100
6.100
6.100
6.100
6.100
8.130
8.130
8.130
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
27.430
  00090>
                                                                           2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
                                                                                                      5.25
5.33
5.58
5.58
5.67
5.83
5.92
6.08
6.17
6.23
6.42
6.58
6.67
6.70
6.70
6.70
7.00
7.17
  00091>
00092>
00093>
  00093>
00094>
00095>
00096>
00097>
00098>
                                                                                                                                                                                                                                                                                      Unit Hyd Qpeak (cms) = 1.013
                                                                                                                                                                                               14.00
                                                                                                                                                                                                                                                       00230>
00231>
00232>
00233>
00234>
00235>
00236>
00236>
00238>
00238>
00239>
00240>
00241>
                                                                                                                                                9.83
9.92
10.00
10.08
10.17
10.25
10.33
10.42
10.50
10.58
                                                                                                                                                                                                                                                                                     PEAK FLOW (cms) = .591 (i)
TIME TO PEAK (hrs) = 10.667
RUNOFF VOLUME (mm) = 55.821
TOTAL RAINFALL (mm) = 93.480
RUNOFF COEFFICIENT = .597
                                                                                                                                                                                              14.17
14.25
14.33
14.49
14.50
14.57
14.87
14.92
15.00
15.08
15.17
15.25
15.33
15.42
15.58
15.57
15.58
15.60
15.58
16.67
16.25
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.58
  00100>
  00100>
00101>
00102>
00103>
00104>
00105>
                                                                                                                                                                                                                                                                                      (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                                                                                                                                                                                        10.75
10.83
10.92
11.00
11.08
11.17
11.25
11.33
11.42
11.50
11.58
11.67
                                                                                                                                                                                                                                                      DWF
(cms)
.000
  001125
                                                                                                                         9.910
                                                                                                                       9.910 | 11.33

9.400 | 11.42

9.400 | 11.50

6.600 | 11.58

6.600 | 11.57

5.590 | 11.75

5.590 | 12.00

5.590 | 12.00

5.590 | 12.15

5.590 | 12.35

5.590 | 12.35

5.590 | 12.35

5.590 | 12.35

5.590 | 12.35
                                                                                                                                                                                                                                                                                                                  SUM 10:outlet 4.62 .934 10.67 55.82
                                                                                                                                                                                                                     1.270
                                                                                                      7.25
7.33
7.42
7.50
7.58
7.67
7.75
7.83
7.83
7.89
8.00
8.17
8.25
8.33
                                                                                                                                                                                                                                                                             NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                                                                                                                                                                                      3.300 | 3.300 | 3.50 | 3.300 | 3.58 | 3.300 | 3.67 | 3.300 | 3.75 | 3.300 | 3.92 | 3.300 | 4.00 | 3.300 | 4.08 | 3.300 | 4.17 | 3.300 |
                                                                                                                                                                    2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
2.290
                                                                                                                                                                                                                   1.270
1.270
1.270
1.270
1.270
1.270
1.270
                                                                                                                                                                                                                                                      00255 WARNINGS / ERRORS / NOTES
002650 Unit 0002 DESIGN MASHYD
002661 WARNINGS : Time step is too large for value of TP.
002662 WARNING: Time step is too large for value of TP.
002663 Unit 0003 ROUTE PIPE ->
002664 ** WARNING: New pipe size used for routing 002650 Unit 00004 DESIGN MASHYD
002665 WARNING: Time step is too large for value of TP.
002668 Unit 0004 DESIGN MASHYD
002669 ** WARNING: Time step is too large for value of TP.
002670 ** WARNING: Time step is too large for value of TP.
002689 *** WARNING: Time step is too large for value of TP.
002690 *** WARNING: Time step is too large for value of TP.
00270> R.V. may be ok. Peak flow could be off.
  00123>
  00124>
00125>
  00126>
00127>
00128>
                                 Unit Hyd Opeak (cms)=
                                                                                                      . 623
00130>
00131>
00132>
00133>
00134>
00135>
                                 PEAK FLOW (cms] =
TIME TO PEAK (hrs) =
RUNOFF VOLUME (mm) =
TOTAL RAINFALL (mm) =
RUNOFF COEFFICIENT =
                                                                                                                      (i)
```

00271>	001:0006 DESIGN NASHYD
00272>	*** WARNING: Time step is too large for value of TP.
00273>	R.V. may be ok. Peak flow could be off.
00274>	Simulation ended on 2009-05-27 at 16:05:46
00275>	=======================================
00276>	
00277>	

00001> ========	00136> over (min) 5.00 10.00
00002> 00003> 55555 W W M H H Y Y M M 000 999 999	00137> Storage Coeff. (min) = .94 (ii) 11.93 (ii) 00138> Unit Hyd. Tpeak (min) = 5.00 10.00
00004> S W W MM MM H H Y Y MM MM O O 9 9 9 9 9 9 00005> SSSSS W W W M M M M HHHHH Y M M M O O ## 9 9 9 9 Ver. 4.02	00139> Unit Hyd. peak (cms)= .34 .10 00140> *TOTALS*
00006> S WW M M H H Y M M O O 9999 9999 July 1999 I	00141> PERK FLOW (cms)= .02 .00 .023 (iii)
00008> 9 9 9 # 4377549	00143> RUNOFF VOLUME (mm)= 41.29 3.62 11.154
00009> StormWater Management HYdrologic Model 999 999 ======== 00010>	00144> TOTAL RAINFALL (mm) = 42.09 42.09 42.08 00145> RUNOFF COEFFICIENT = .98 .09 .265
00012> ************************************	00146> *** WARNING: Storage Coefficient is smaller than DT! 00147> Use a smaller DT or a larger area.
00013> ****** A single event and continuous hydrologic simulation model ****** 00014> ****** based on the principles of HYMO and its successors *******	00148> 00149> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00015\ ************************************	00150> CN* = 38.0 Ia = Dep. Storage (Above) 00151> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00017> Distributed by: J.F. Sabourin and Associates Inc. 00018> Ottawa, Ontario: (613) 727-5199 00019> Gatineau, Quebec: (819) 243-6858 00020> E-Mail: sumbwomd@ffaa.Com	00152> THAN THE STORAGE COEFFICIENT. 00153> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00019> ******* Gatineau, Quebec: (819) 243-6858 ******* 00020> ****** E-Mail: swmhymo@jfsa.Com *******	00154> 00155>
00020> ****** E-Mail: swmhymo@jfsa.Com ****** 00021> ************************************	00156> 001:0003
00023> ++++++++++++++++++++++++++++++++++++	001585 DOUTE DIDE Cultural DIDE Number = 1 00
00024> ++++++ Licensed user: Condeland Engineering Limited ++++++ 00025> +++++++ Toronto SBRIALF:4377549 ++++++ 00026> ++++++++++++++++++++++++++++++++++++	00155> IN-1> 00T= 8 Diameter (mm) = 450.00 00160> DT= 5.0 min Length (m) = 45.00 00161> Slope (m/m) = .01100
00027> 00028> ************************************	00162> Manning n = .025 00163>
00029> ****** ++++++ PROGRAM ARRAY DIMENSIONS +++++	00164> < TRAVEL TIME TABLE> 00165> DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
000315 Max. number of rib Numbers : 100 000315 Max. number of ribratifall points: 15000 000325 Max. number of flow points : 15000	00166> (m) (cu.m.) (cms) (m/s) min 00167> .024 .1448+00 .001 .260 2.89
	00168> .047 .402E+00 .004 .405 1.85
00034> 00035>	00170> .095 .110E+01 .015 .620 1.21
00036> ************************************	00172> .142 .194E+01 .034 .781 .96
00038> * DATE: 2009-05-27 TIME: 18:52:11 RUN COUNTER: 000033 *	00173> .166 .239E+01 .045 .847 .89 00174> .189 .286E+01 .058 .905 .83
00040> * Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\post2yr.dat * 00041> * Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\post2yr.out *	00175> .213 .334E+01 .071 .956 .78 00176> .237 .382E+01 .085 .999 .75
00042> * Summary filename: U:\EXFILES\ENGINE~1\HYMO\Projects\09015\post2yr.sum * 00043> * User comments:	00177> .261 .429E+01 .099 1.036 .72 00178> .284 .476E+01 .113 1.067 .70
00045 * 1: 00045> * 2:	00179> .308 .522E+01 .126 1.090 .69 00180> .332 .565E+01 .139 1.106 .68
00046> * 3:*	00181> .355 .606E+01 .150 1.114 .67 00182> .379 .643E+01 .159 1.114 .67
00048> 00049>	00183> .403 .676E+01 .165 1.102 .68 00184> .426 .701E+01 .167 1.073 .70
00055> 001:0001	00185> .450 .716E+01 .156 .979 .77 00186> < hydrograph> <-pipe / channel->
00052> *# Project Name: [214925 ONTARIO LIMITED] Project Number: [09-015] 00053> *# Date : 11-08-2008	00187>
00053 * # Date : 11-08-2008 00054 * # Modeller : [ROBERT DE ANGELIS] 00055 * # Company : Condeland Engineering Limited 00056 * # License # : 4377549	00189> INFLOW: ID= 1:600
000575 *#**********************************	00191> 00192>
00058>	00193>
00060> Rainfall dir.: U:\EXFILES\ENGINE~1\HYMO\Projects\09015\	00195> 00196> DESIGN STANDHYD Area (ha)= .38
00061> TZERO = 4.00 hrs on 0 00062> METOUT= 2 (output = METRIC) 00063> NRUN = 001	00197> 02:601 DT= 5.00 Total Imp(%) = 20.00 Dir. Conn.(%) = 20.00 00198>
00064> NSTORM= 0	00199> IMPERVIOUS PERVIOUS (i)
00066> 001:0002	00201> Dep. Storage (mm) = .80 1.50 00202> Average Slope (%) = .50 .50
00068: DBSIGN STANDHYD Area (ha)= .58 00068: 01:600 DT= 5.00 Total Imp(t)= 20.00 Dir. Conn.(t)= 20.00 000705	00203> Length (m)= 50.20 40.00 00204> Mannings n = .013 .250
00070>	00205> Max.eff.Inten.(mm/hr)= 60.45 15.68
00072> Surface Area (ha)= .12 .46	00207> over (min) 5.00 25.00 00208> Storage Coeff. (min)= 2.54 (ii) 24.99 (ii)
00073> Dep. Storage (mm)= .80 1.50 00074> Average Slope (%)= 21.42 21.42 00075> Length (m)= 62.24 40.00	00209> Unit Hyd. Tpeak (min)= 5.00 25.00 00210> Unit Hyd. peak (cms)= .29 .05
00075 Length (m) 52.24 40.00 000765 Mannings n 013 .250	00211> 001t Hyd. Peak (cms)= .25 .55 **TOTALS* 00212> PEAK FLOW (cms)= .01 .01 .017 (iii)
00078> New rainfall entered directly by user.	00213> TIME TO PEAK (hrs)= 10.58 10.92 10.583
00079> TIME STEP= 5.00 min # of STEPS= 199 00080> DURATION =16.58 hrs TOTAL RAIN= 42.09 mm	00215> TOTAL RAINFALL (mm) = 42.09 42.09 42.088
00081> 00082> TIME RAIN TIME RAIN TIME RAIN TIME RAIN	00217> *** WARNING: Storage Coefficient is smaller than DT!
00083> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 00084> .08 1.020 4.25 1.520 8.42 1.520 12.58 .760	00218> Use a smaller DT or a larger area. 00219> 00220> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00085>	00221> $CN^* = 81.0$ Ia = Dep. Storage (Above)
00087> .33 1.020 4.50 1.520 8.67 1.520 12.83 .760 00088> .42 1.020 4.58 1.520 8.75 1.520 12.92 .760	00222> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00223> THAN THE STORAGE COEFFICIENT.
00089>	00224> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00225>
00091>	00226>
00093> .83 1.020 5.00 3.050 9.17 1.520 13.33 .760 00094> .92 1.020 5.08 3.050 9.25 1.520 13.42 .760	00228> 00229> DESIGN STANDHYD Area (ha) = 5.50
00095>	00230> 03:602 DT= 5.00 Total Imp(%)= 50.00 Dix. Conn.(%)= 50.00 00231>
00097>	00232>
00099> 1.33 1.020 5.50 3.050 9.67 1.520 13.83 .760 00100> 1.42 1.020 5.50 3.050 9.75 1.520 13.92 .760	00234> Dep. Storage (mm)= .80 1.50 00235> Average Slope (%)= .50 .50
00101>	00236> Length (m) = 191.42 40.00 00237> Mannings n = .013 .250
00103>	00238> 00239> Max.eff.Inten.(mm/hr)= 60.45 14.00
00105>	00240> over (min) 5.00 30.00 00241> Storage Coeff. (min)= 5.68 (ii) 29.16 (ii)
00107>	00242> Unit Hyd. Tpeak (min) = 5.00 30.00 00243> Unit Hyd. peak (cms) = .20 .04
00109>	00244> *TOTALS* 00245> PEAK FLOW (cms)= .42 .07 .446 (iii)
00111> 2.33 1.020 6.50 60.450 10.67 1.020 14.83 .510 00112> 2.42 1.020 6.58 60.450 10.75 1.020 14.92 .510	00246> TIME TO PEAK (hrs)= 10.58 11.00 10.583 00247> RUNOFF VOLUME (mm)= 41.29 16.45 28.867
00113> 2.50 1.020 6.67 10.670 10.83 1.020 15.00 .510 00114> 2.58 1.020 6.75 10.670 10.92 1.020 15.08 .510	00248> TOTAL RAINFALL (mm) = 42.09 42.09 42.088 00249> RUNOFF COEFFICIENT = .98 .39 .686
00115> 2.67 1.020 6.03 6.600 11.00 1.020 15.17 .510 00116> 2.75 1.020 6.92 6.600 11.08 1.020 15.25 .510	00250> 00251> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00117> 2.83 1.020 7.00 4.830 11.17 1.020 15.33 .510 00118> 2.92 1.020 7.08 4.830 11.25 1.020 15.42 .510	00252> CM* = 81.0 Ia = Dep. Storage (Above) 00253> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
001195 3.00 1.020 7.17 4.570 11.33 1.020 15.50 .510 00120> 3.08 1.020 7.25 4.570 11.42 1.020 15.58 .510	00254> THAN THE STORAGE COEFFICIENT. 00255> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00121> 3.17 1.020 7.33 3.300 11.50 1.020 15.67 .510 00122> 3.25 1.020 7.42 3.300 11.58 1.020 15.75 .510	00255> 00255> 00257>
00123> 3.23 1.520 7.50 2.790 11.67 1.020 15.83 .510 00124> 3.42 1.520 7.58 2.790 11.75 1.020 15.92 .510	00258> 001:0006
00125> 3.50 1.520 7.67 2.790 11.75 1.020 15.92 .510 00125> 3.50 1.520 7.75 2.790 11.83 1.020 16.00 .510	00263>
00127> 3.67 1.520 7.73 2.790 11.92 1.020 16.17 .510 00127> 3.67 1.520 7.92 2.790 12.00 1.020 16.17 .510	00262> (cms) (hrs) 00263> *** WARNING: No storage required, RelRate > Inflow Op.
00129> 3.83 1.520 8.00 2.790 12.17 1.020 16.33 .510	00265> ••• WARNING: NO Storage required, Keikate > Inflow Up. 00265> 001:0007
00131> 4.00 1.520 8.17 2.790 12.33 1.020 16.50 .510	00265> 001:000/
00133> 4.17 1.520 8.33 1.520 12.50 .760	00268> ************************************
00134> 00135> Max.eff.Inten.(mm/hr)= 60.45 5.58	00269> WARNINGS / ERRORS / NOTES 00270>

```
00271> 001:0002 DESIGN STANDHYD
00272> *** WARNING: Storage Coefficient is smaller than DT!
00273- 001:0004 DESIGN STANDHYD
00275- 00275- 00275- 001:0006 COMPUTE VOLIME:
00279- 001:0006 COMPUTE VOLIME:
00279- 00282> *** WARNING: No storage required, RelRate > Inflow Op.
55mulation ended on 2009-05-27 at 18:52:13
```

	284000000000000000000000000000000000000	00136> over (min) 5.00 10.00
00002>		00137> Storage Coeff. (min)= .79 (ii) 9.50 (ii) 00138> Unit Hyd. Tpeak (min)= 5.00 10.00
00004> 00005> 00006>	SSSSS WWW MMM HHHHH Y MMM O O ## 9 9 9 Ver. 4.02	00139> Unit Hyd. peak (cms)= .34 .12 00140> *TOTALS* 00141> PEAK FLOW (cms)= .02 .01 .028 (iii)
00008>	- \$5555 WW M M H H I M M 000 9 9 ========	001415 TIME TO PEAK (hrs) = 10.58 10.67 10.583 001435 RUNOFF VOLUME (mm) = 48.59 4.96 13.686
00000>	StormWater Management HYdrologic Model 999 999 =======	00145 TOTAL RAINFALL (mm) = 49.39 49.39 49.389 00145 RUNOFF COEFFICIENT = .98 .10 .277
00011>	. ************************************	00146> *** WARNING: Storage Coefficient is smaller than DT! 00147> Use a smaller DT or a larger area.
00013>	******* A single event and continuous hydrologic simulation model ****** ******* based on the principles of HYMO and its successors *******	00148> 00149> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00015> 00016>	OTTHYMO-83 and OTTHYMO-89.	00150> CN* = 38.0 Ia = Dep. Storage (Above) 00151> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00017> 00018>	******* Ortaka Ontario: /613\ 727-5199 *******	00152> THAN THE STORAGE COEFFICIENT. 00153> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00019> 00020>	++++++ E-Mail: swmhymo@jfsa.Com +++++++	00154> 00155>
00021>		001569 001:0003
00023> 00024> 00025>	+++++++ Licensed user: Condeland Engineering Limited +++++++	00158> ROUTE PIPE culver PIPE Number = 1.00 00159> IN= 1> 00T= 8 Diameter (mm) = 450.00 00160> DT= 5.0 min Length (m) = 45.00 00161>
00025>	+++++++++++++++++++++++++++++++++++++++	00161> Slope (m/m) = .01100 00162> Manning n = .025
00028>	******* ++++++ PROGRAM ARRAY DIMENSIONS ++++++	00163> 00164> < TRAVEL TIME TABLE>
00030> 00031>	• ****** Maximum value for ID numbers : 10	00165> DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME 00166> (m) (cu.m.) (cms) (m/s) min
00032> 00033>	******* Max. number of flow points : 15000 *******	00167> .024 .144E+00 .001 .260 2.89 00168> .047 .402E+00 .004 .405 1.85
00034> 00035>	•	00169> .071 .7258+00 .008 .522 1.44 00170> .095 .110E+01 .015 .620 1.21
00036>		00171> .118 .150E+01 .024 .706 1.06 00172> .142 .194E+01 .034 .781 .96 00173> .166 .239E+01 .045 .847 .89
00038> 00039> 00040>		00173> .166 .239g+01 .045 .847 .89 00174> .189 .286g+01 .058 .905 .83 00175> .213 .334g+01 .071 .956 .78
00041>	* Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\post5yr.out *	00176> .237 .382E+01 .085 .999 .75 00177> .261 .429E+01 .099 1.036 .72
00043>	* User comments: * *	00178> .284 .475E+01 .113 1.067 .70 00179> .308 .522E+01 .126 1.090 .69
00045>	* * 2:	00180> .332 .565E+01 .139 1.106 .68 00181> .355 .606E+01 .150 1.114 .67
00047> 00048>		00182> .379 .643E+01 .159 1.114 .67 00183> .403 .676E+01 .165 1.102 .68
000505	001:0001	00104> .426 .701E+01 .167 1.073 .70 00185> .450 .716E+01 .156 .979 .77
		001865
00054>	*# Modeller : [ROBERT DE ANGELIS]	00188> (ha) (cms) (hrs) (mm) (m) (m/s) (0189> INFLOW: ID= 1:600 .58 .028 10.58 13.686 .130 .739 00190> OUTFLOW: ID= 8:culver .58 .030 10.58 13.686 .133 .752
00056>	** Project Name: [21925 ONTAKIO LINITED] Project Number: [U9-015] ** Date : 1-08-2008 ** Modeller : [ROBERT DE ANGELIS] ** Company : Condeland Engineering Limited ** License \$: 4377549	00191> 00192>
00058>	- Lampon - Lambour din . Halayatted another 1/1000 parious 1000151	00193>
00060>	SIMI Project dir.: U:\EXPILES\BMGINE-I\HYMO\Projects\09015\	00195> 00196> DESIGN STANDHYD Area (ha) = .38
00063>	NRUN = 001	00197> 02:601 DT= 5.00 Total Imp(%)= 20.00 Dir. Conn.(%)= 20.00 00198>
		00199> IMPERVIOUS PERVIOUS (i) 00200> Surface Area (ha)= .08 .30 00201> Dep. Storage (mm)= .80 1.50
000675	> 001:0002	00201> Dep. Storage (mm)= .80 1.50 00202> Average Slope (%)= .50 .50 00203> Length (m)= 50.20 40.00
00069>	DESIGN STANDHYD Area (ha)= .58 01:600 DT=5.00 Total Imp(%)= 20.00 Dir. Conn.(%)= 20.00	00204> Mannings n = .013 .250
00071> 00072>	> IMPERVIOUS PERVIOUS (i) > Surface Area (ha)= .12 .46	00206> Max.eff.Inten.(mm/hr)= 69.60 23.22 00207> over (min) 5.00 20.00
00073> 00074>	Average Slope (%)= 31.75 31.75	00208> Storage Coeff. (min)= 2.40 (ii) 21.59 (ii) 00209> Unit Hyd. Tpeak (min)= 5.00 20.00
00075> 00076>	Mannings n = .013 .250	00210> Unit Hyd. peak (cms) = .30 .05 00211> *TOTALS* 00212> PEAK FLOW (cms) = .01 .01 .022 (iii)
00077> 00078> 00079>	New rainfall entered directly by user.	00212> PEAK FLOW (cms)= .01 .01 .022 (iii) 00213> TIME TO PEAK (hrs)= 10.58 10.83 10.583 00214> RUNOFF VOLUME (mm)= 48.59 21.34 26.790
00080>	DURATION =16.58 hrs TOTAL RAIN= 49.39 mm	00215> TOTAL RAINFALL (mm) = 49.39 49.39 49.389 00216> RUNOFF COEFFICIENT = .98 .43 .542
00082>		00217> *** WARNING: Storage Coefficient is smaller than DT! 00218> Use a smaller DT or a larger area.
00084> 00085>	.17 1.270 4.33 1.780 8.50 1.780 12.67 1.020	00219> 00220> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00086>	.33 1.270 4.50 1.780 8.67 1.780 12.83 1.020	00221> CN* = 81.0 Ia = Dep. Storage (Above) 00222> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00088> 00089> 00090>	· .50 1.270 4.67 1.780 8.83 1.780 13.00 1.020	00223> THAN THE STORAGE COEFFICIENT. 00224> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00225>
00091>	· .67 1.270 4.83 1.780 9.00 1.780 13.17 1.020	00226> 00227> 001:0005
00093> 00094>	83 1.270 5.00 3.300 9.17 1.780 13.33 1.020	00228> 00229> DESIGN STANDHYD Area (ha)= 5.50
00095>	1.00 1.270 5.17 3.300 9.33 1.780 13.50 1.020 1.08 1.270 5.25 3.300 9.42 1.780 13.58 1.020	00230> 03:602 DT= 5.00 Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00 00231>
00097>	> 1.25 1.270 5.42 3.300 9.58 1.780 13.75 1.020	00232>
00099>	> 1.42 1.270 5.58 3.300 9.75 1.780 13.92 1.020	00234> Dep. Storage (mm)= .80 1.50 00235> Average Slope (%)= .50 .50 00236> Length (m)= 191.42 40.00
00101> 00102> 00103>	> 1.58 1.270 5.75 3.300 9.92 1.780 14.08 1.020	00236> Length (m) = 191.42 40.00 00237> Mannings n = .013 .250 00238>
00104>	> 1.75 1.270 5.92 4.570 10.08 1.270 14.25 .760	00239> Max.eff.Inten.(mm/hr)= 69.60 19.94 00240> over (min) 5.00 25.00
00106× 00107×	> 1.92 1.270 6.08 6.600 10.25 1.270 14.42 .760	00241> Storage Coeff. (min) = 5.37 (ii) 25.75 (ii) 00242> Unit Hyd. Tpeak (min) = 5.00 25.00
00108>	2.08 1.270 6.25 15.240 10.42 1.270 14.58 .760 2.17 1.270 6.33 33.270 10.50 1.270 14.67 .760	00243> Unit Hyd. peak (cms) = .21 .04 00244> *TOTALS*
00110> 00111>	> 2.25 1.270 6.42 33.270 10.58 1.270 14.75 .760 > 2.33 1.270 6.50 69.600 10.67 1.270 14.83 .760	00245> PEAK FLOW (cms)= .48 .10 .534 (iii) 00246> TIME TO PEAK (hrs)= 10.58 10.92 10.583
00112> 00113>	> 2.50 1.270 6.67 12.190 10.83 1.270 15.00 .760	00247> RUNOFF VOLUME (mm) = 48.59 21.34 34.964 00248> TOTAL RAINFALL (mm) = 49.39 49.39 49.39
001142	> 2.67 1.270 6.83 7.620 11.00 1.270 15.17 .760	00249> RUNOFF COEFFICIENT = .98 .43 .708 00250> 00251> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00116> 00117> 00118>	> 2.83 1.270 7.00 5.590 11.17 1.270 15.33 .760	00251> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00252> CN* = 81.0 Ia = Dep. Storage (Above) 00253> (ii) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL
00119>	> 3.00 1.270 7.17 5.080 11.33 1.270 15.50 .760	002545 (11) THE STORAGE COEFFICIENT. 002555 (111) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001212	> 3.17 1.270 7.33 3.810 11.50 1.270 15.67 .760	00256> 00257>
00123	> 3.33 1.780 7.50 3.050 11.67 1.270 15.83 .760 > 3.42 1.780 7.58 3.050 11.75 1.270 15.92 .760	00258> 001:0006
00125	> 3.50 1.780 7.67 3.050 11.83 1.270 16.00 .760 > 3.58 1.780 7.75 3.050 11.92 1.270 16.08 .760	00260> COMPUTE VOLUME 00261> 10:03 (602) DISCHARGE TIME 00262> (cms) (hrs)
001273	> 3.67 1.780 7.83 3.050 12.00 1.270 16.17 .760 > 3.75 1.780 7.92 3.050 12.08 1.270 16.25 .760	00262> (cms) (hrs) 00263> *** WARNING: No storage required, RelRate > Inflow Qp. 00264>
001292	> 3.92 1.780 8.08 3.050 12.25 1.270 16.42 .760	00264>
001312 001322 001332	> 4.08 1.780 8.25 3.050 12.42 1.270 16.58 .760	00267>
00134	>	00269> WARNINGS / ERRORS / NOTES 00270>

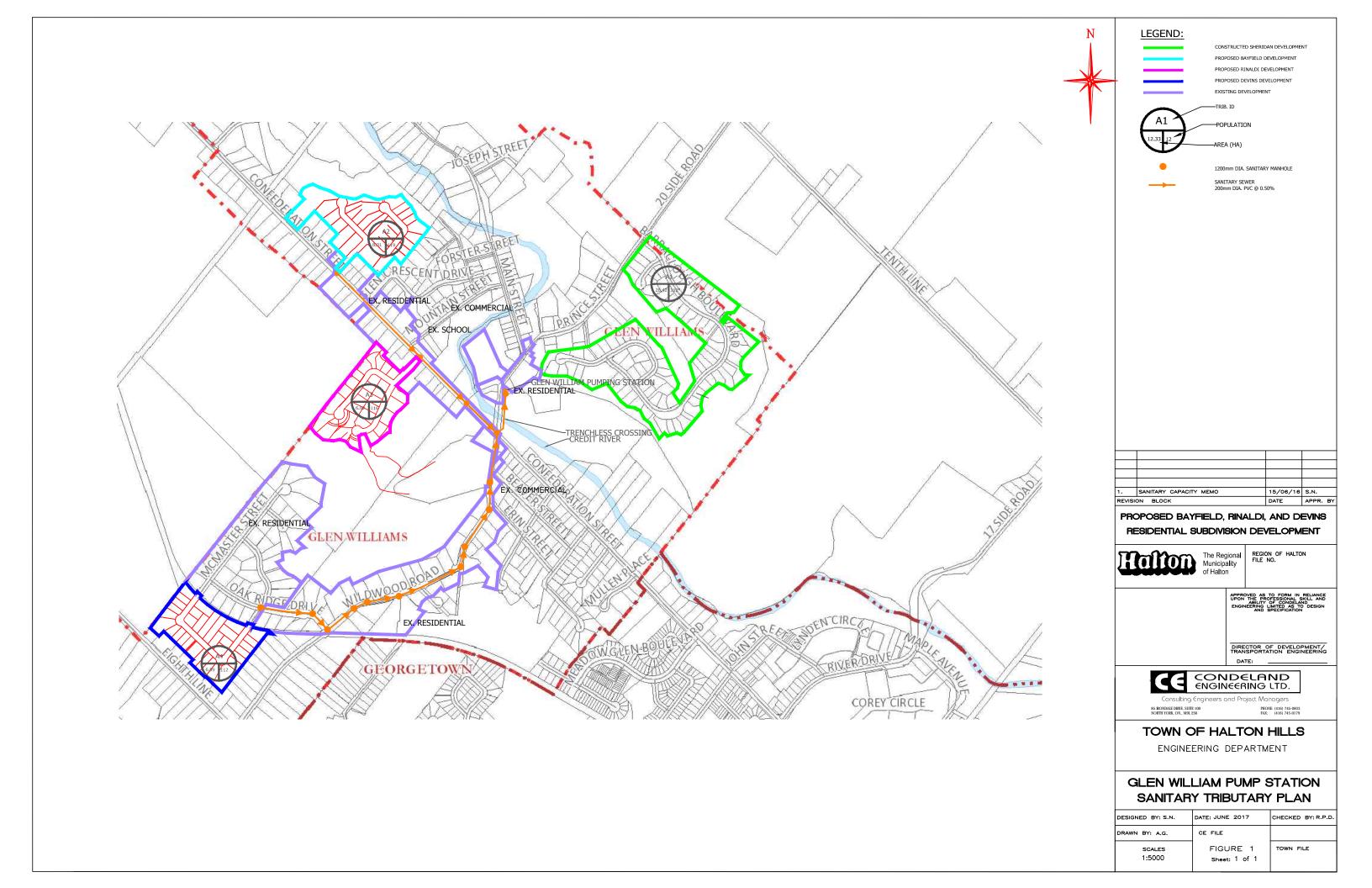
00002> 00003> 00004> 00005> 00006> 00007> 00008> 00009>	SSSSS W W W MM M H H Y Y M M MO O	001365
00011x 00012x 00013x 00014x 00016x 00016x 00019x 00021x 00022x 00023x 00022x 00027x 00028x 00029x 00030x 00031x 00030x 00	A single event and continuous hydrologic simulation model based on the principles of HYMO and its successors OTHYMO-83 and OTHYMO-83 and OTHYMO-89.	001465 001470 001487 00110003 001495 001505 DESIGN STANDHYD Area (ha) = .58 001501 011600 DT = 5.00 Total Imp(\$) = 20.00 Dir. Conn. (\$) = 20.00 00151 011600 DT = 5.00 Total Imp(\$) = 20.00 Dir. Conn. (\$) = 20.00 00152 00152 00153 IMPERVIOUS PERVIOUS (\$) 00153 Dep. Storage (mm) = .80 1.50 00153 00155 Dep. Storage (mm) = .80 1.50 00155 0
00046> 00047> 00049> 00050> 00051> 00052> 00053> 00054> 00055> 00056> 00057>	001:0001	001800
00066> 00067> 00068> 00069>	READ STORM Filename: U:\EXFILES\ENGINE-1\HYMO\Projects\090.15\\ Ptotal= 97.05 mm Filename: U:\EXFILES\ENGINE-1\HYMO\Projects\090.15\\ Ptotal= 97.05 mm Filename: U:\EXFILES\ENGINE-1\HYMO\Projects\090.15\\ TIME	002015
00085 000865 000879 000895 000995 000995 000995 000995 000995 000997 001005 001005 001005 001005 001005 001005 001005 001005 001005 001005 001005 001005 001005 001115 001115	1.00	
00117> 00118> 00119> 00120> 00121> 00122> 00123> 00124> 00125> 00126> 00127> 00128> 00130> 00131> 00131> 00135>	3.67 1.992 9.67 22.904 15.67 3.059 21.67 1.797 3.75 1.992 9.75 22.904 15.75 3.059 21.75 1.797 3.83 1.988 9.83 59.395 15.83 3.055 21.75 1.797 3.83 1.988 9.83 59.395 15.83 3.055 21.83 1.793 4.00 1.988 9.82 59.395 15.92 3.055 21.82 1.92 1.793 4.00 1.988 10.00 59.395 15.92 1.055 22.00 1.793 4.00 2.380 10.08 13.199 16.00 3.055 22.00 1.793 4.17 2.380 10.17 13.199 16.07 2.329 22.20 8 1.797 4.17 2.380 10.17 13.199 16.17 2.329 22.17 1.797 4.25 2.380 10.17 13.199 16.27 2.329 22.21 3 1.793 4.25 2.380 10.17 13.199 16.27 2.329 22.25 1.793 4.25 2.329 22.25 1.793 4.25 2.329 22.25 1.793 4.25 2.329 22.25 1.793 4.25 2.376 10.50 13.199 16.25 2.329 22.32 1.793 4.50 2.376 10.65 13.199 16.59 2.329 22.32 1.793 4.50 2.376 10.67 7.958 16.58 2.329 22.58 1.797 4.57 2.380 10.57 7.958 16.58 2.329 22.25 5 1.797 4.75 2.380 10.57 7.958 16.67 2.329 22.27 5 1.797 4.75 2.380 10.67 7.958 16.67 2.329 22.27 5 1.797 4.75 2.380 10.67 7.958 16.67 2.329 22.28 1.793 4.92 2.376 10.83 7.958 16.69 2.329 22.28 1.793 4.92 2.376 10.83 7.958 16.69 2.329 22.28 1.793 4.92 2.376 10.83 7.958 16.69 2.329 22.29 22.83 1.793 5.00 2.376 11.00 7.958 16.69 2.329 22.90 1.793 5.00 2.376 11.00 7.958 17.00 2.329 23.300 1.793	ODS

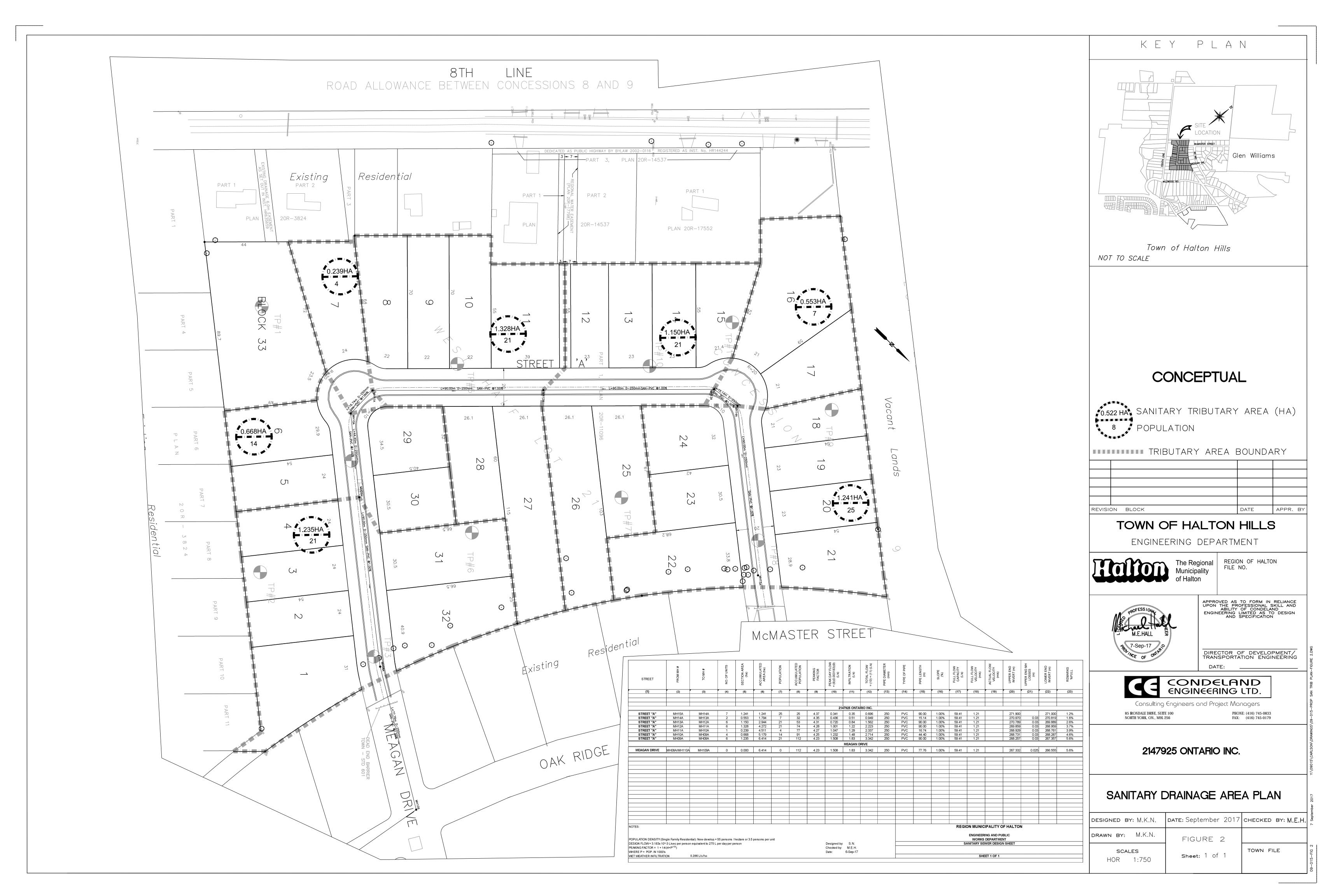
000012	00136>
00042> * Summary filename: U:\EXFILES\ENGINE~I\HYMO\Projects\U9015\post25yr.sum *	00176> .237 .382E+01 .085 .999 .75 00177> .261 .429E+01 .099 1.036 .72
00043> * User comments:	00178> .284 .476E+01 .113 1.067 .70 00179> .308 .522E+01 .126 1.090 .69
00045> * 2: 00046> * 3: 00047>	00180> .332 .565E+01 .139 1.106 .68 00181> .355 .606E+01 .150 1.114 .67
00048> 00048>	00182> .379 .643E+01 .159 1.114 .67 00183> .403 .676E+01 .165 1.102 .68 00184> .426 .701E+01 .167 1.073 .70
00050> 001:0001	00185> .450 .716E+01 .156 .979 .77 00186> hydrograph> <-pipe / channel->
00052> *# Project Name: [214925 ONTARIO LIMITED] Project Number: [09-015] 00053> *# Date : 11-08-2008	00187> AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL 00188> (ha) (cms) (hrs) (mm) (m) (m/s)
00053 * Project Name: [21923 ONIRNO LINID] Project Number: [09-015] 00053 * B Date : 11-08-2008 00054 * Modeller : [ROBERT DE ANGELIS] 00055 * Company : Condeland Engineering Limited 00056 * License # : 4377549 00057 * ********************************	00199> INFLOW: ID= 1:600
00058>	00192>
00059> START Project dir.: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\ 00060>	00194> 001:0004
00061> T2ERO = 4.00 hrs on 0 00062> METOUT= 2 (output = METRIC) 00063> NRUN = 001	00196> DESIGN STANDHYD Area (ha)= .38 00197> 02:601 DT=5.00 Total Imp(%)= 20.00 Dir. Conn.(%)= 20.00 00198>
00064>	00199>
00066> 001:0002	00201> Dep. Storage (mm)= .80 1.50 00202> Average Slope (%)= .50 .50
00068> DESIGN STANDHYD Area (ha)= .58 00069> 01:600 DT= 5.00 Total Imp(%)= 20.00 Dir. Conn.(%)= 20.00 000700	00203> Length (m)= 50.20 40.00 00204> Mannings n = .013 .250 00205>
00071>	00206> Max.eff.Inten.(mm/hr)= 107.44 53.97 00207> over (min) 5.00 15.00
00073> Dep. Storage (mm) = .80 1.50 00074> Average Slope (%) = 42.68 42.68	00208> Storage Coeff. {min}= 2.02 (ii) 15.71 (ii) 00209> Unit Hyd. Tpeak (min}= 5.00 15.00
00075> Length (m)= 62.24 40.00 00076> Mannings n = .013 .250 00077>	00210
00078> New rainfall entered directly by user. 00079> TIME STEP= 5.00 min # of STEPS= 199	00213> TIME TO PEAK (hrs)= 10.58 10.75 10.583 00214> RUNOFF VOLUME (mm)= 75.59 41.71 48.487
00080>	00215> TOTAL RAINFALL (mm) = 76.39 76.39 76.392 00216> RUNOFF COEFFICIENT = ,99 .55 .635 00217> *** WARNING: Storage Coefficient is smaller than DT!
00083> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 00084> .08 2.030 4.25 2.790 8.42 2.790 12.58 1.520	00218> Use a smaller DT or a larger area.
00085>	00220> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00221> CN* = 81.0 Ia = Dep. Storage (Above) 0022> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00087>	00222> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00223> THAN THE STORAGE COEFFICIENT. 00224> (iii) PEAK FLOW DOES NOT INCLUDE BRSEFLOW IF ANY.
00090>	00225> 00226>
00092> .75 2.030 4.92 2.790 9.08 2.790 13.25 1.520 00093> .83 2.030 5.00 5.080 9.17 2.790 13.33 1.520 00094> .92 2.030 5.08 5.080 9.25 2.790 13.42 1.520	00227> 001:0005
00095>	00229> DESIGN STANDHYD Area (ha)= 5.50 00230> 03:602
00097>	00232> IMPERVIOUS PERVIOUS (i) 00233> Surface Area (ha)= 2.75 2.75
00099>	002357 Surrace Area (na)= 2.75 2.75 002367 Dep. Storage mm= .80 1.50 002355 Average Slope (%)= .50 .50 002365 Length (m)= 191.42 40.00
00102>	00237> Mannings n = .013 .250 00238>
00105> 1.83 2.030 6.00 10.410 10.17 2.030 14.33 1.020	00239> Max.eff.Inten.(mm/hr)= 107.44 46.65 00240> over (min) 5.00 20.00
00106> 1.92 2.030 6.08 10.410 10.25 2.030 14.42 1.020 00107> 2.00 2.030 6.17 23.370 10.33 2.030 14.50 1.020 00108> 2.08 2.030 6.25 23.370 10.42 2.030 14.58 1.020	00241> storage Coeff. (min)= 4.51 (ii) 19.02 (ii) 00242> Unit Hyd. Tpeak (min)= 5.00 20.00 00243> Unit Hyd. peak (cms)= .23 .06
00109>	00244> +TOTALS+
00111>	00245> PEAK FLOW (cms)= .77 .23 .920 (iii)
00113>	00248> TOTAL RAINFALL (mm) = 76.39 76.39 76.392 00249> RUMOFF CORFICIENT = .99 .55 .768 00250> *** WARNING: Storage Coefficient is smaller than DT!
00116>	00251> Use a smaller DT or a larger area.
00118>	00255> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00254> CN* = 81.0 Ia = Dep. Storage (Above)
00120> 3.08 2.030 7.25 8.130 11.42 2.030 15.58 1.020 00121> 3.17 2.030 7.33 5.590 11.50 2.030 15.67 1.020 00122> 3.25 2.030 7.42 5.590 11.58 2.030 15.75 1.020	00255> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00256> THAN THE STORAGE COEFFICIENT. 00257> (iii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00123> 3.33 2.790 7.50 4.830 11.67 2.030 15.83 1.020 00124> 3.42 2.790 7.58 4.830 11.75 2.030 15.92 1.020	00258> 00259>
00125> 3.50 2.790 7.67 4.830 11.83 2.030 16.00 1.020 00126> 3.58 2.790 7.75 4.830 11.92 2.030 16.08 1.020	00260> 001:0006
00127> 3.67 2.790 7.83 4.830 12.00 2.030 16.17 1.020 00128> 3.75 2.790 7.92 4.830 12.08 2.030 16.25 1.020 00129> 3.83 2.790 8.00 4.830 12.17 2.030 16.33 1.020	00262> COMPUTE VOLUME 00263> ID:03 (602) DISCHARGE TIME 00264> (cms) (hrs)
00130> 3.92 2.790 8.08 4.830 12.25 2.030 16.42 1.020 00131> 4.00 2.790 8.17 4.830 12.33 2.030 16.50 1.020	00265> *** WARNING: No storage required, RelRate > Inflow Op.
00132>	00267> 001:0007
00134> 00135> Max.eff.Inten.(mm/hr)= 107.44 19.17	00269>
Condeland Engineering Limited	Page

```
00271> WARNINGS / ERRORS / NOTES
00272> 001:0002 DESIGN STANDHYD
00274> *** WARNING: Storage Coefficient is smaller than DT!
00275> 001:0004 DESIGN STANDHYD
002775 *** WARNING: Storage Coefficient is smaller than DT!
002779 *** WARNING: Storage Coefficient is smaller than DT!
002789 001:0005 DESIGN STANDHYD
002789 00280 Use a smaller DT or a larger area.
002800 *** WARNING: Storage Coefficient is smaller than DT!
002819 Use a smaller DT or a larger area.
002829 001:0006 COMPUTE VOLUME
002829 Simulation ended on 2009-05-27 at 19:11:21
```

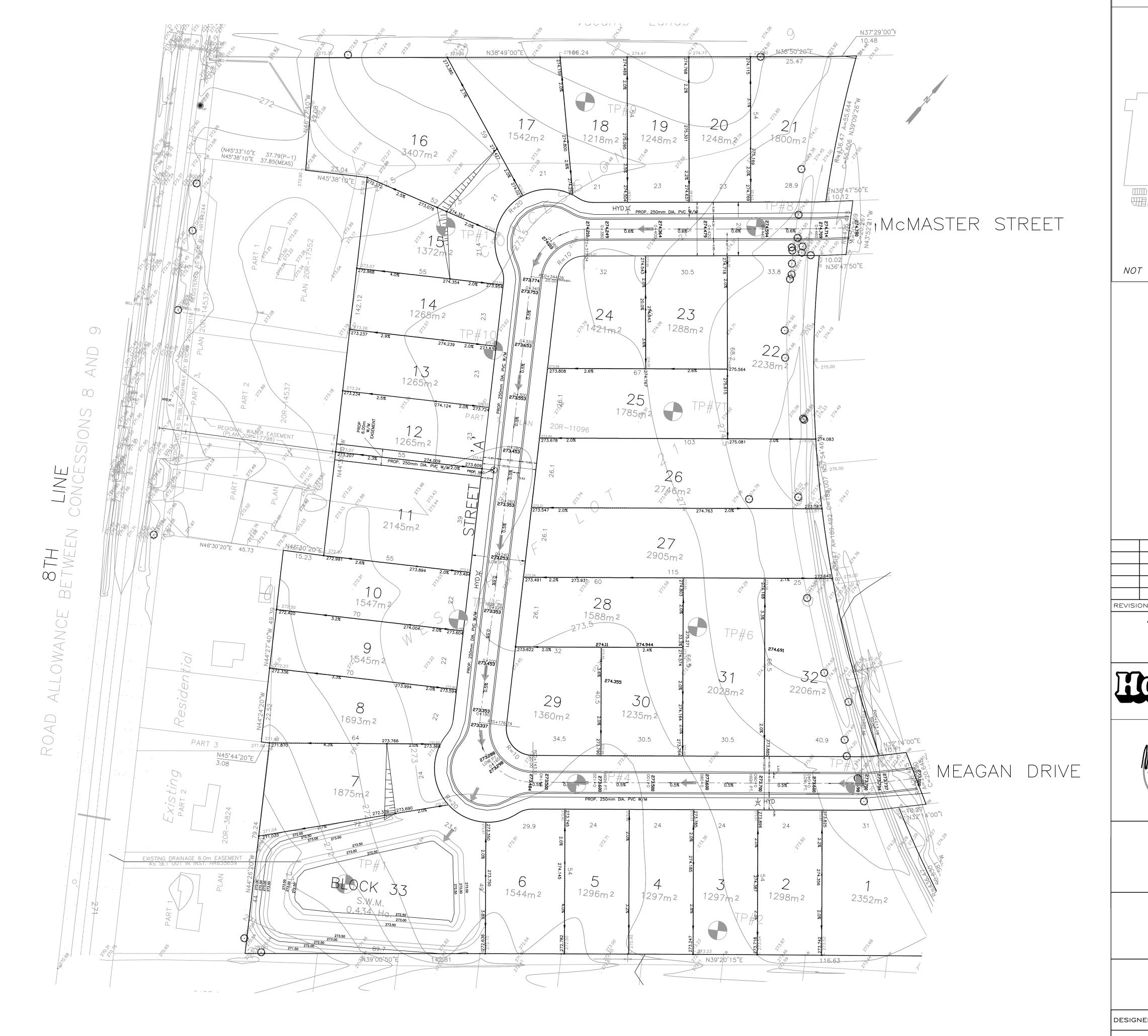
00001>		
00002> 00003> sssss w w m m m m m y y m m 000 999 9	999 ======= 00137 00138	8> Unit Hyd. Tpeak (min) = 5.00 5.00
000045 S WW MMM H H Y Y MMMM O O ## 9 9 9 9 000055 SSSSS WW M M HHHHHH Y MM M O O ## 9 9 9 9 000065 S WW M M H H H Y K M M M O O ## 9 9 9 9	9 Ver. 4.02 00140	*TOTALS*
00006> 5 WW M M H H Y M M O O 9999 9 00007> SSSSS WW M M H H Y M M OOO 9 00008> 9 9 9	9999 July 1999 00141 9 # 4377549 00143	2> TIME TO PEAK (hrs) = 10.58 10.58 10.583
00009> StormWater Management HYdrologic Model 999 9	999 ======= 00143	4> TOTAL RAINFALL (mm) = 82.35 82.349
00011> 00012> ************************************	00146	6> *** WARNING: Storage Coefficient is smaller than DT!
00013> ****** A single event and continuous hydrologic simulation m	nodel ****** 00148	8>
00016> ************************************	00151	0> CN* = 38.0 Ia = Dep. Storage (Above)
00017> ****** Distributed by: J.F. Sabourin and Associates Inc. 00018> ****** Ottawa, Ontario: (613) 727-5199	****** 00152	3> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00019> Gatineau, Quebec: (819) 243-6858 00020> E-Mail: swmhymo@jfsa.Com		5>
00021> 00022> 00023>	00157	6> 001:0003
00024> ++++++ Licensed user: Condeland Engineering Limited 00025> ++++++ Toronto SERIAL#:4377549	++++++ 00159 ++++++	5> ROUTE PIPE culver PIPE Number = 1.00 5> IN-1> OUT= 8 Diameter (mm)= 45.00 0> DT= 5.0 min Length (m)= 45.00
00026> ++++++++++++++++++++++++++++++++++++		1> Slope (m/m) = .01100
00028> *******	00163 ******	3>
00030> ****** Maximum value for ID numbers : 10 00031> ***** Max. number of rainfall points: 15000 00032> **** Hax. number of flow points : 15000	****** 00165 ******* 00166	6> (m) (cu.m.) (cms) (m/s) min
00033>	00168	8> .047 .402B+00 .004 .405 1.85
00034> 00035>	00169 00170	0> .095 .110B+01 .015 .620 1.21
00036> ************ DETAILED OUTPUT **********************************	************* 00172	2> .142 .194E+01 .034 .781 .96
000395 ************************************		4> .189 .286E+01 .058 .905 .83
00041> * Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\pc 00042> * Summary filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\pc	st50yr.out * 00176	6> .237 .382E+01 .085 .999 .75
00043> * User comments:	• 00178 • 00179	8> .284 .476E+01 .113 1.067 .70
00045> * 2: 00046> * 3:	* 00180 00181	0> .332 .565E+01 .139 1.106 .68
00047> ************************************	00183	3> .403 .676E+01 .165 1.102 .68
00049>	00184 00185	5> .450 .716E+01 .156 .979 .77
000525 *# Project Name: (214925 ONTARIO LIMITED) Project Number: 1	100_0161 00107	7> AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
00053> *# Date : 11-08-2008 11-08-2008 10054> *# Modeller : (ROBERT DE ANGELIS) 10055> *# Company : Condeland Engineering Limited 10056> *# License # : 4377549 10057> ************************************	00189 00190	9> INFLOW: 1D= 1:600 .58 .061 10.58 26.868 .196 .919
00056> *# License # : 4377549	00191	1>
00058>	2rojects\09015\ 00193	3>
00060> Rainfall dir.: U:\EXFILES\ENGINE~1\HYMO\N 00061> TZERO = 4.00 hrs on 0	Projects\09015\ 00195	55
00062> METOUT= 2 (output = METRIC) 00063> NRUN = 001	00130	0/
00064> NSTORM= 0 00065>		0> Surface Area (ha) = .08 .30
000675	00202	2> Average Slope (%)= .50 .50
00068> DESIGN STANDHYD Area (ha)= .58 00069> 01:600 DT= 5.00 Total Imp(%)= 20.00 Dir. Conn.(%): 00070>	= 20.00 00204 00205	4> Mannings n = .013 .250 5>
00071>	00206 00207	7> over (min) 5.00 15.00
00073> Dep. Storage (mm)= .80 1.50 00074> Average Slope (%)= 49.10 49.10	00208 00209	9> Unit Hyd. Tpeak (min) = 5.00 15.00
00075> Length (m) = 62.24 40.00 00076> Mannings n = .013 .250 00077>	00210 00211 00212	1> *TOTALS*
00078> New rainfall entered directly by 00079> TIME STEP= 5.00 min # of STEPS	user. 00213	3> TIME TO PEAK (hrs)= 10.58 10.75 10.583
00080> DURATION =16.58 hrs TOTAL RAIN 00081>	4≈ 82.35 mm 00215	5> TOTAL RAINFALL (mm) = 82.35 82.349
00082>	hrs mm/hr 00218	7> *** WARNING: Storage Coefficient is smaller than DT! 8> Use a smaller DT or a larger area.
00084>	12.58 1.650 00219 12.67 1.650 00220	0> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00086>	12.83 1.650 00222	2> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00089>	13.00 1.650 00224	4> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00091> .67 2.120 4.83 3.050 9.00 3.050 00092> .75 2.120 4.92 3.050 9.08 3.050	13.17 1.650 00226	6>
00093> .83 2.120 5.00 5.640 9.17 3.050 00094> .92 2.120 5.08 5.640 9.25 3.050	13.33 1.650 00228	8> 9> DESIGN STANDHYD Area {ha}= 5.50
00095>	13.50 1.650 00230 13.58 1.650 00231	0> 03:602 DT= 5.00 Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00
00097>	13.67 1.650 00232 13.75 1.650 00233	3> Surface Area (ha)= 2.75 2.75
00109>	13.83 1.650 00234 13.92 1.650 00235 14.00 1.650 00236	5> Average Slope (%) = .50 .50
00102> 1.58 2.120 5.57 5.640 9.83 3.050 00102> 1.58 2.120 5.75 5.640 9.92 3.050 00103> 1.67 2.120 5.83 7.520 10.00 2.120	14.00 1.650 00236 14.08 1.650 00237 14.17 1.170 00238	7> Mannings n = .013 .250
00104>	14.25 1.170 00239 14.33 1.170 00240	9> Max.eff.Inten.(mm/hr) = 116.06 52.23 0> over (min) 5.00 20.00
00106>	14.42 1.170 00241 14.50 1.170 00242	<pre>1> Storage Coeff. (min) = 4.37 (ii) 18.25 (ii) 2> Unit Hyd. Tpeak (min) = 5.00 20.00</pre>
00108> 2.08 2.120 6.25 25.370 10.42 2.120 00109> 2.17 2.120 6.33 55.440 10.50 2.120	14.58 1.170 00243 14.67 1.170 00244	3> Unit Hyd. peak (cms)= .23 .06 4> *TOTALS*
00110>	14.75 1.170 00245 14.83 1.170 00246	6> TIME TO PEAK (hrs)= 10.58 10.75 10.583
00112> 2.42 2.120 6.58 116.060 10.75 2.120 00113> 2.50 2.120 6.67 19.870 10.83 2.120 00114> 2.58 2.120 6.75 19.870 10.92 2.120	14.92 1.170 00247 15.00 1.170 00248 15.08 1.170 00249	8> TOTAL RAINFALL (mm) = 82.35 82.35 82.349
00115> 2.67 2.120 6.83 12.690 11.00 2.120 00116> 2.75 2.120 6.92 12.690 11.00 2.120	15.17 1.170 00250 15.25 1.170 00251	0> *** WARNING: Storage Coefficient is smaller than DT!
00117> 2.83 2.120 7.00 9.170 11.17 2.120 00118> 2.92 2.120 7.08 9.170 11.25 2.120	15.33 1.170 00252 15.42 1.170 00253	2>
00119>	15.50 1.170 00254 15.58 1.170 00255	4> CN* = 81.0 Ia = Dep. Storage (Above) 5> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00121> 3.17 2.120 7.33 6.100 11.50 2.120 00122> 3.25 2.120 7.42 6.100 11.58 2.120	15.67 1.170 00256 15.75 1.170 00257	6> THAN THE STORAGE COEFFICIENT. 7> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00123> 3.33 3.050 7.50 5.170 11.67 2.120 00124> 3.42 3.050 7.58 5.170 11.75 2.120		9>
00125> 3.50 3.050 7.67 5.170 11.83 2.120 00126> 3.58 3.050 7.75 5.170 11.92 2.120 00127> 3.67 3.050 7.83 5.170 12.00 2.120	16.08 1.170 00261	0> 001:0006
00127> 3.67 3.050 7.83 5.170 12.00 2.120 00128> 3.75 3.050 7.92 5.170 12.08 2.120 00129> 3.83 3.050 8.00 5.170 12.17 2.120	16.25 1.170 00263	2> COMPUTE VOLUME 3> ID:03 (602) DISCHARGE TIME 4> (cms) (hrs)
00130> 3.92 3.050 8.08 5.170 12.17 2.120 00131> 4.00 3.050 8.17 5.170 12.35 2.120	16.42 1.170 00265 16.50 1.170 00266	5> START CONTROLLING AT .467 10.416
00132>	16.58 1.000 00267 00268	7> STOP CONTROLLING AT .934 10.598 8>
00134> 00135> Max.eff.Inten.(mm/hr)= 116.06 22.12	00269 00270	9> REQUIRED STORAGE VOLUME (ha.m.) = .0081 0> TOTAL HYDROGRAPH VOLUME (ha.m.) = .3520
	i	

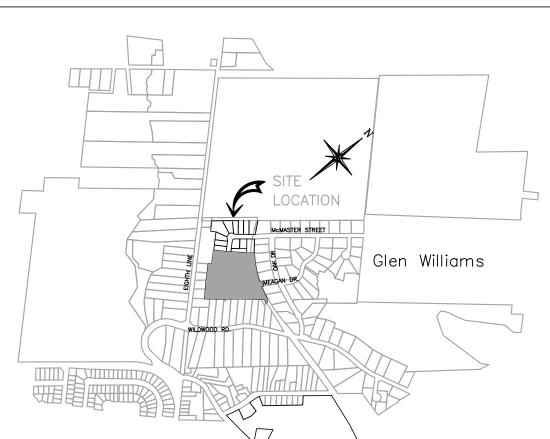
```
00271>
002712-
002723-
002733-
002745-
002745-
002745-
002765-
002765-
002765-
002775-
002765-
002776-
002777-
002765-
002778-
002765-
002778-
002768-
002789-
002805-
002810-
002805-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
002810-
```


00001> ===	====±±±===±±===========================	00136>	
00002> 00003> S	SSSS W W M M H H Y Y M M 000 999 999 =========	00137> 00138>	Unit Hyd. Tpeak (min) = 5.00 5.00
00004> S 00005> S	SSSS W W M M H H Y Y M M OOO 999 999 ccumence W W W MM MM H H Y Y M MM O O 9 9 9 9 Ver. 4.02 SSS W W M M M HHRRH Y M M O O 9999 9999 July 1999 SSS W W M M H H Y M M O O 9999 9999 July 1999 SSS W M M M H H Y M M OOO 9999 9999 July 1999	00139> 00140>	*TOTALS*
	S WW M M H H Y M M O O 9999 9999 July 1999 SSSS WW M M H H Y M M 000 9 9 ===========================	00141> 00142>	TIME TO PEAK (hrs) = 10.58 10.58 10.583
00008> 00009>	9 9 9 # 4377549 StormWater Management HYdrologic Model 999 999 =======	00143>	TOTAL RAINFALL (mm) = 89.06 89.06 89.056
	***************************************	00145> 00146>	*** WARNING: Storage Coefficient is smaller than DT!
00013> *	****** A single event and continuous hydrologic simulation model ******	00147>	Use a smaller DT or a larger area.
00015> *	****** based on the principles of HYMO and its successors ****** ****** OTTHYMO-83 and OTTHYMO-89.	00149>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 38.0
00017> *	****** Distributed by: J.F. Sabourin and Associates Inc.	00151> 00152>	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
00018> *	****** Ottawa, Ontario: (613) 727-5199 ****** ****** Gatineau, Quebec: (819) 243-6858 *******	00153> 00154>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	***** B-Mail: swmhymo@jfsa.Com ******	00155>	001:0003
00022> 00023> +	***************************************	00157>	ROUTE PIPE Culver PIPE Number = 1.00
00024> +	++++++ Licensed user: Condeland Engineering Limited ++++++ Toronto SERIAL#:4377549 +++++++	00160>	IN= 1> OUT= 8 Diameter (mm)= 450.00 DT= 5.0 min Length (m)= 45.00
	***************************************	00161> 00162>	
00028> *	****** +++++ PROGRAM ARRAY DIMENSIONS ++++++	00163> 00164>	
	****** Maximum value for ID numbers : 10 ****** ****** Max. number of rainfall points: 15000 *******	00165> 00166>	DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
	****** Max. number of flow points : 15000 ******	00167> 00168>	.024 .144E+00 .001 .260 2.89 .047 .402E+00 .004 .405 1.85
00034> 00035>		00169> 00170>	071 .725E+00 .008 .522 1.44
00036> *	************* DETAILED OUTPUT **********************************	00171> 00172>	.118 .1508+01 .024 .706 1.06
00038> *	DATE: 2009-05-27 TIME: 16:06:18 RUN COUNTER: 000031 *	00173> 00174>	.166 .2398+01 .045 .847 .89
00040> *	Input filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\post100y.dat * Output filename: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\post100y.out *	00175> 00176>	.213 .3348+01 .071 .956 .78
00042> *	Summary filename: U:\EXFILES\ENGINE~1\HYMO\Projects\09015\post100y.sum * User comments: *	00177> 00178>	.261 .429E+01 .099 1.036 .72
00044> *	1: ************************************	00179>	.308 .522E+01 .126 1.090 .69
00045> * 00046> * 00047> *	*	00181> 00182>	.355 .606E+01 .150 1.114 .67
00048>		00183> 00184>	.403 .676E+01 .165 1.102 .68
00050> 00	1:0001	00185> 00186>	.450 .716E+01 .156 .979 .77
000525 *#	Project Name: [214925 ONTARIO LIMITED] Project Number: [09-015]	00187> 00188>	AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
00054> *#	Modeller : [ROBERT DE ANGELIS] Commany : Condeland Engineering Limited	00189>	INFLOW: ID= 1:600 .58 .069 10.58 29.868 .209 .947
00056> *#	Date : 11-08-2008 MODELIS Company : Condeland Engineering Limited License # : 4377549	00191> 00192>	· · · · · · · · · · · · · · · · · · ·
00058>	START Project dir.: U:\EXPILES\ENGINE~1\HYMO\Projects\09015\	001935	
00060>	TZERO = 4.00 hrs on 0 Rainfall dir.: U:\EXFILES\ENGINE-1\HYMO\Projects\09015\	00195>	DESIGN STANDHYD Area (ha)= .38
00062> 00063>	METOUT= 2 (output = METRIC) NRUN = 001	00197> 00198>	· 02:601 DT= 5.00 Total Imp(%)= 20.00 Dir. Conn.(%)= 20.00
00064>	NSTORM= 0	00199>	IMPERVIOUS PERVIOUS (i)
00066> 00	1:0002	00201> 00202>	· Dep. Storage (mm) = .80 1.50
00068> :	DESIGN STANDHYD Area {ha}= .50 01:600 DT= 5.00 Total Imp{%}= 20.00 Dir. Conn.{%}= 20.00	00203>	· Length (m) = 50.20 40.00
00070> 00071>	IMPERVIOUS PERVIOUS (i)	00205> 00206>	
00072> 00073>	Surface Area (ha)= .12 .46 Dep. Storage (mm)= .80 1.50	00207> 00208>	over (min) 5.00 15.00
00074> 00075>	Average Slope (%)= 53.09 53.09 Length (m)= 62.24 40.00	00209> 00210>	
00076> 00077>	Mannings n = .013 .250	00211> 00212>	*TOTALS* • PEAK FLOW (cms)= .03 .04 .056 (iii)
00078> 00079>	New rainfall entered directly by user. TIME STEP= 5.00 min # of STEPS= 199	00213> 00214>	RUNOFF VOLUME (mm)= 88.26 52.10 59.332
00080> 00081>	DURATION =16.58 hrs TOTAL RAIN= 89.06 mm	00215> 00216>	RUNOFF COEFFICIENT = .99 .59 .666
00082> 00083>	TIME RAIN TIME R	00217>	Use a smaller DT or a larger area.
00084> 00085>	.17 2.290 4.33 3.300 8.50 3.300 12.67 1.780	00219>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00086> 00087>	.25 2.290 4.42 3.300 8.58 3.300 12.75 1.780 .33 2.290 4.50 3.300 8.67 3.300 12.83 1.780 .42 2.290 4.58 3.300 8.75 3.300 12.92 1.780	00221> 00222> 00223>	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00088> 00089>	.50 2.290 4.67 3.300 8.83 3.300 13.00 1.780	00224>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00090> 00091>	.67 2.290 4.83 3.300 9.00 3.300 13.17 1.780	00225> 00226>	001:0005
00092> 00093>	.03 2.290 5.00 6.100 9.17 3.300 13.33 1.780	00228>	. <u>2-22</u>
00094> 00095> 00096>	.92 2.290 5.08 6.100 9.25 3.300 13.42 1.780 1.00 2.290 5.17 6.100 9.33 3.300 13.50 1.780 1.08 2.290 5.25 6.100 9.42 3.300 13.59 1.780	00230>	03:602 DT= 5.00 Total Imp(%)= 50.00 Dir. Conn. (%)= 50.00
000965 00097> 00098>	1.17 2.290 5.33 6.100 9.50 3.300 13.67 1.780	00232>	IMPERVIOUS PERVIOUS (i)
00099>	1.33 2.290 5.50 6.100 9.67 3.300 13.83 1.780	00234>	Dep. Storage (mm) = .80 1.50
00100> 00101> 00102>	1.42 2.290 5.58 6.100 9.75 3.300 13.92 1.780 1.50 2.290 5.67 6.100 9.83 3.300 14.00 1.780 1.58 2.290 5.75 6.100 9.92 3.300 14.08 1.780	00235> 00236> 00237>	Length (m)= 191.42 40.00
00102> 00103> 00104>	1.58 2.290 5.75 6.100 9.92 3.300 (14.08 1.780 1.67 2.290 5.83 6.130 10.00 2.290 14.17 1.270 1.75 2.290 5.92 6.130 10.08 2.290 14.25 1.270	00237> 00238> 00239>	· · · · · · · · · · · · · · · · · · ·
00104> 00105> 00106>	1.75 2.290 5.92 8.130 10.08 2.290 14.25 1.270 1.83 2.290 6.00 11.940 10.17 2.290 14.33 1.270 1.92 2.290 6.08 11.940 10.25 2.290 14.42 1.270	00239> 00240> 00241>	over (min) 5.00 15.00
00106> 00107> 00108>	1.92 2.290 6.08 11.940 10.25 2.290 14.42 1.270 2.00 2.290 6.17 27.430 10.33 2.290 14.50 1.270 2.08 2.290 6.25 27.430 10.42 2.290 14.58 1.270	00241> 00242> 00243>	Unit Hyd. Tpeak (min) = 5.00 15.00
00108> 00109> 00110>	2.18 2.290 5.25 27.430 10.42 2.290 14.58 1.270 2.17 2.290 6.33 59.940 10.50 2.290 14.67 1.270 2.25 2.290 6.42 59.940 10.58 2.290 14.75 1.270	00243>	*TOTALS*
00110> 00111> 00112>	2.25 2.290 6.42 59.940 10.56 2.290 14.75 1.270 2.33 2.290 6.50 125.480 10.67 2.290 14.83 1.270 2.42 2.290 6.58 125.480 10.75 2.290 14.92 1.270	00245>	TIME TO PEAK (hrs)= 10.58 10.75 10.583
00112> 00113> 00114>	2.42 2.290 6.57 21.480 10.73 2.290 15.00 1.270 2.58 2.290 6.75 21.480 10.92 2.290 15.08 1.270	00247>	TOTAL RAINFALL (mm) = 89.06 89.06 89.056
00114> 00115> 00116>	2.67 2.290 6.83 13.720 11.00 2.290 15.17 1.270 2.75 2.290 6.92 13.720 11.08 2.290 15.25 1.270	00250>	*** WARNING: Storage Coefficient is smaller than DT!
00116> 00117> 00118>	2.73 2.290 7.00 9.910 11.17 2.290 15.33 1.270 2.92 2.290 7.08 9.910 11.25 2.290 15.42 1.270	00252> 00253>	
00118> 00119> 00120>	3.00 2.290 7.17 9.400 11.23 2.290 15.42 1.270 3.08 2.290 7.25 9.400 11.42 2.290 15.58 1.270	00253> 00254> 00255>	CN* = 81.0 Ia = Dep. Storage (Above)
00120> 00121> 00122>	3.17 2.290 7.23 6.600 11.50 2.290 15.67 1.270 3.25 2.290 7.42 6.600 11.58 2.290 15.75 1.270	00256>	THAN THE STORAGE COEFFICIENT.
00122> 00123> 00124>	3.25 2.290 7.42 6.600 11.56 2.290 15.75 1.270 3.33 3.300 7.50 5.590 11.67 2.290 15.83 1.270 3.42 3.300 7.58 5.590 11.75 2.290 15.92 1.270	00258>	(111) PEAK FLOW DOES NOT INCLUDE HASEFLOW IF ANI.
00125>	3.50 3.300 7.67 5.590 11.83 2.290 16.00 1.270	00260>	001:0006
00126> 00127>	3.67 3.300 7.83 5.590 12.00 2.290 16.17 1.270	00262>	COMPUTE VOLUME
00128> 00129>	3.75 3.300 7.92 5.590 12.08 2.290 16.25 1.270 3.83 3.300 8.00 5.590 12.17 2.290 16.33 1.270 3.92 3.300 8.08 5.590 12.25 2.290 16.42 1.270	00264>	(cms) (hrs)
00130> 00131>	4.00 3.300 8.17 5.590 12.33 2.290 16.50 1.270	00265>	INFLOW HYD. PEAKS AT 1.155 10.583
00132> 00133> 00134>	4.08 3.300 8.25 5.590 12.42 2.290 16.58 1.270 4.17 3.300 8.33 3.300 12.50 1.780	00267> 00268> 00269>	•
00134>	Max.eff.Inten.(mm/hr) = 125.48 25.60	00269>	


(U:\...post100y.out)

APPENDIX 'D'


Conceptual Design Figures


- Fig. 1, Glen Williams Pump Station Sanitary Tributary Plan
 - Fig. 2, Sanitary Drainage Area Plan
 - Fig. 3, General Servicing Plan
 - Fig. 4, Proposed Grading Plan
 - Fig. 5, Pre-development Storm Drainage Area Plan
 - Fig. 6, Post-development Storm Drainage Area Plan

K E Y P L A N

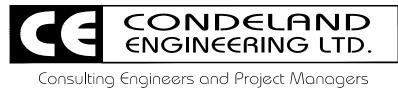
Town of Halton Hills NOT TO SCALE

CONCEPTUAL

REVISIO	ON BLOCK	DATE	APPR. BY

TOWN OF HALTON HILLS

ENGINEERING DEPARTMENT



nal REGION OF HALTON FILE NO.

APPROVED AS TO FORM IN RELIANCE UPON THE PROFESSIONAL SKILL AND ABILITY OF CONDELAND ENGINEERING LIMITED AS TO DESIGN AND SPECIFICATION

DIRECTOR OF DEVELOPMENT/ TRANSPORTATION ENGINEERING

Consulting Engineers and Project Managers

85 RONDALE DRIVE, SUITE 100
PHONE: (416) 745-0833
NORTH YORK, ON., M9L 286
PAX: (416) 745-0179

2147925 ONTARIO INC.

PROPOSED GRADING PLAN

DESIGNED BY: M.K.N. DATE: September 2017 CHECKED BY: M.E.H.


DRAWN BY: M.K.N. FIGURE 4

SCALES
HOR 1:750 Sheet: 1 of 1

TOWN FILE

Town of Halton Hills NOT TO SCALE

CONCEPTUAL

300 SUB CATCHMENT AREA ID.

TRIBUTARY AREA BOUNDARY

	REVISIO	ON BLOCK	DATE	APPR. BY

TOWN OF HALTON HILLS

ENGINEERING DEPARTMENT

The Regional Municipality

TIEL NO.

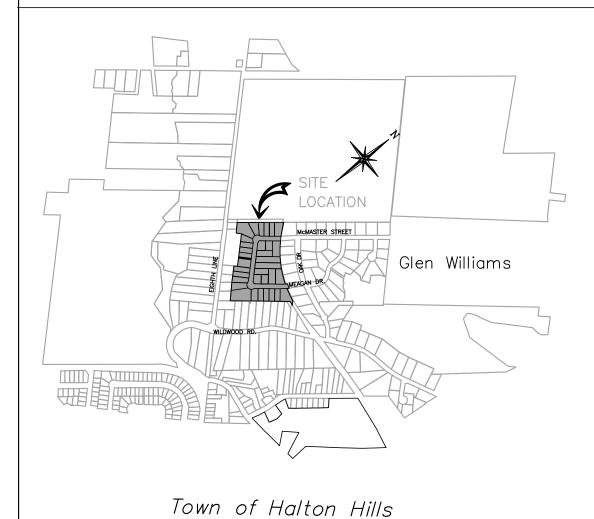
UPON THE PROFESSIONAL SKILL AND
ABILITY OF CONDELAND
ENGINEERING LIMITED AS TO DESIGN
AND SPECIFICATION

DIRECTOR OF DEVELOPMENT/ TRANSPORTATION ENGINEERING

Consulting Engineers and Project Managers

85 RONDALE DRIVE, SUITE 100
NORTH YORK, ON., M9L 2S6

PHONE: (416) 745FAX: (416) 745-


2147925 ONTARIO INC.

PRE DEVELOPMENT STORM DRAINAGE AREA PLAN

DESIGNED BY: M.K.N.	DATE: September 2017	CHECKED BY: M.E.H.	7 Septe
DRAWN BY: M.K.N.	FIGURE 5		
SCALES		TOWN FILE	FIG 5
HOR 1:750	Sheet: 1 of 1		09-015-

K E Y P L A N

NOT TO SCALE

CONCEPTUAL

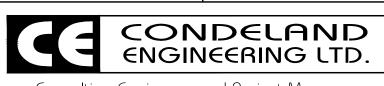
TRIBUTARY AREA BOUNDARY

STORM TRIBUTARY AREA (HA) RUNOFF COEFFICIENT

REVISIO	N BLOCK	DATE	APPR. BY
	<u> </u>		•

TOWN OF HALTON HILLS

ENGINEERING DEPARTMENT


The Region Municipality

REGION OF HALTON FILE NO.

APPROVED AS TO FORM IN RELIANCE
UPON THE PROFESSIONAL SKILL AND
ABILITY OF CONDELAND
ENGINEERING LIMITED AS TO DESIGN
AND SPECIFICATION

DIRECTOR OF DEVELOPMENT/ TRANSPORTATION ENGINEERING DATE:

Consulting Engineers and Project Managers

85 RONDALE DRIVE, SUITE 100
NORTH YORK, ON., M9L 2S6

PHONE: (416) 745-0833
FAX: (416) 745-0179

....

2147925 ONTARIO INC.

POST DEVELOPMENT STORM DRAINAGE AREA PLAN

DESIGNED BY: M.K.N.	DATE:September 2017	CHECKED BY: M.E.H
DRAWN BY: M.K.N.	FIGURE 6	
SCALES		TOWN FILE
HOR 1:750	Sheet: 1 of 1	