

AGK Multi Res 16 Bridlewood Blvd Limehouse, ON 519-217-2892 Michael@cleanwave.ca Michael Kosziwka

Water levels, Basement, and Dewatering 16-18 Mill St, Georgetown, Ontario

In support of a development proposal at 16-18 Mill St, Georgetown, ON, EAL was requested to comment on the water levels and dewatering required for the basement depth.

The water levels as recorded by EAL had a maximum elevation of 237.26m Above Sea Level (ASL) in July 2020. The architectural drawings dated 2023-04-03 state that the minimum basement floor elevation is to be 237.714m ASL, which is 0.45m above the recorded water elevation. Footings will be excavated below this elevation. In addition, data from three Halton wells adjacent to the site show that the water levels are seasonal and spring water levels can be higher than the proposed basement depth.

Therefore, temporary dewatering will be required for the construction of the footings. In addition, the basement should be waterproofed and a permanent dewatering system should be installed to account for high water levels.

A preliminary calculation for dewatering quantities required during construction is attached in the Appendix. Assuming a drawdown of 1m from the current water table, the required pump rate would be about 0.11m³/sec (1740 GPM). A more detailed dewatering calculation and dewatering system design should be completed during the structural design stage of the project when the footing depths are known.

It is advised to avoid construction of the foundations during the spring season when ground water levels area highest to minimize pumping requirements.

LIMITATIONS

This letter was prepared for the consideration of the city, EAL, and Client only. Its contents cannot be used or disclosed to any other party without the prior written consent of Egmond Associates Ltd (EAL).

EAL accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted. No other warranties are implied or expressed.

Egmond Associates Ltd

Geotechnical & Environmental Engineers

Julie vander Meulen, B. Eng., M.A.Sc

John Van Egmond, P.Eng. P.E., President, Q.P.

APPENDIX PRELIMINARY DEWATERING CALCULATIONS

Log Used						
Elevation ASL (m)	Start m	End m	thickness m	material	Colour	k = Permeability m/sec
245	0	0.1	0.1	Asphalt Pavement		na
	0	1.6	1.6	Fill, sand, gravel, topsoil	Brown	na
243.4	1.6	4	2.4	Sand, fine, silt layers	Brown	0.00001
241	4	7.4	3.4	Sand, coarse	Brown	0.001
237.6	7.4	14.5	7.1	Sand, coarse, saturated - WL	brown	0.001
230.5	14.5	30	15.5	Sand, coarse, saturated,packed	Grey and Brown	0.001
215	30	100	70	Queenston Formation - bedrock	Red	
145	100					

H - Height above bedrock to "current" water table	22.6 m	

Want to drop water level 1 m at middle of excavation so edges will be dry.				
Want to drop from		to depth (m)	static height above water table in	
depth (m)			middle of excavation - $h_{\rm w}$	
7.4		8.4	21.6	
7.4		9.4	20.6	
7.4		10.4	19.6	

	Length (m)
Excavation Width	43
Narrowest width of excavation	32
Distance from well to edge of Excavation	0.3
H = Height of static water above bedrock	22.6
D = Aquifer thickness from bedrock to 6m allowed	24

Equivalent Radius of the Array of wells if the wells are on or near Property Line.				
r _e =	23.9	m		
alternate				
r _e =	20.9	m	use larger in m	23.9

R _o The Radius of influence of pumping is			
$R_o = r_e + 3000(H-h_w)*k^0.5$			
hw	Ro	Q m ³ /sec to drop to h _w shown	
21.6	94.87	0.11	
20.6	189.74	0.15	
19.6	284.60	0.18	

$$Q = \frac{2\pi k D (H - h_w)}{\ln \left[\frac{R_o}{r_e}\right]}$$